• 제목/요약/키워드: Nano-Composite

검색결과 1,052건 처리시간 0.025초

On the vibration of aligned carbon nanotube reinforced composite beams

  • Aydogdu, Metin
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.199-210
    • /
    • 2014
  • Carbon nanotubes have exceptional mechanical, thermal and electrical properties, and are considered for high performance structural and multifunctional composites. In the present study, the natural frequencies of aligned single walled carbon nanotube (CNT) reinforced composite beams are obtained using shear deformable composite beam theories. The Ritz method with algebraic polynomial displacement functions is used to solve the free vibration problem of composite beams. The Mori-Tanaka method is applied to find the composite beam mechanical properties. The continuity conditions are satisfied among the layers by modifying the displacement field. Results are found for different CNT diameters, length to thickness ratio of the composite beam and different boundary conditions. It is found that the use of smaller CNT diameter in the reinforcement element gives higher fundamental frequency for the composite beam.

다중벽 탄소나노튜브를 함유한 PC/ABS 복합재의 마모 특성 및 다중벽 탄소나노튜브의 유출 평가 (Evaluation of MWCNT Exposure and the Wear Characteristics of MWCNT-containing PC/ABS Composites)

  • 이현우;김경식;이재혁;김효섭;김재호;오동훈;류상효;장영찬;김재현;이학주;김광섭
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.278-283
    • /
    • 2014
  • Carbon nanotubes (CNTs) are used in various composite materials to enhance electrical, thermal and mechanical properties of composite materials. In this study, we investigate the wear characteristics of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends containing multi-walled carbon nanotubes (MWCNTs). PC/ABS blends are commonly used in many industrial applications such as cellular phones and display cases and MWCNTs have been added to the PC/ABS blends to improve their electromagnetic interference shielding (EMS). We performed wear tests on PC/ABS blends containing MWCNTs under reciprocating linear sliding conditions with chrome steel balls as a counterpart material. The normal loads were 10, 30, 50, 70, 100 N, the sliding speed was 10 mm/s, the stroke length was 15 mm, and the tests lasted 900 s. The MWCNTs included in the PC/ABS blends lower the wear volume and friction coefficient of the composites. We analyzed the wear debris collected from the composites during the tests in terms of the MWCNT concentration using inductively coupled plasma optical emission spectroscopy. The results show that the quantity of MWCNTs in the debris is proportional to the concentration of MWCNTs in the composite, indicating that the exposure of the MWCNTs to environments by wear could be increased with their concentration in the composite.

구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica)

  • 이호용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.459-464
    • /
    • 2016
  • 본 연구에서는 리튬이온 전지용 실리콘 음극소재의 사이클 안정성 및 율속 특성 향상을 위해 다공성 실리콘/탄소 복합소재의 전기화학적 특성을 조사하였다. 나노 실리카 제조는 스토버 방법을 사용하고 교반 속도, 교반 온도 및 $NH_3$/TEOS 비율을 조절 하여 100~500 nm 크기의 구형 실리카를 합성하였다. 구형 나노 실리카의 마그네슘 열환원과 산처리 과정을 통해 다공성 실리콘을 얻고, 제조된 다공성 실리콘에 Phenolic resin을 탄소전구체로 사용하여 최종적으로 다공성 실리콘/탄소 활물질을 합성하였다. 또한 $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%) 전해액에서 다공성 실리콘/탄소 음극소재의 충 방전, 순환전압 전류, 임피던스 테스트 등의 전기화학적 특성을 조사 하였다. 다공성 실리콘/탄소 복합소재의 음극활물질로서 코인 전지의 성능을 조사한 결과 초기용량 및 40사이클 용량 보존율은 각각 2,006 mAh/g, 55.4%를 나타내었다.

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

Development and Characterization of Asymmetric Swelling-Induced Wrinkles on Natural Rubber Surface

  • Lee, Gi-Bbeum;Sathi, Shibulal Gopi;Kim, Min Jung;Park, Changsin;Huh, Yang Il;Nah, Changwoon
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.342-349
    • /
    • 2016
  • Characteristics of the swelling-induced wrinkles on the surfaces of natural rubber (NR) film were investigated. The wrinkle structure was generated by swelling of NR film pre-stretched and firmly bonded onto an aluminum substrate in hexane. A novel experimental method was adopted to replicate the swelling-induced wrinkles on the NR film using an epoxy-hardener system. To get insight into the wrinkle parameters; the wrinkle length (L), wrinkle distance (D), wrinkle height (H) and the angle between two consecutive wrinkles (${\theta}$), the cross-sections of the replicas obtained from saturated swollen NR film were examined using an optical microscopy (OM). From the OM images, the wrinkling parameters were measured as a function of the thickness of NR film from 0.42 to 1.76 mm. Also, it was evaluated that the effects of swelling time on the wrinkling parameters. The length (L), distance (D) and height (H) of wrinkles increased as the thickness of the NR film and the swelling time increased. However, the angle between the wrinkles (${\theta}$) showed a sharp decrease up to a swelling time of 200 minutes and slightly decreased afterwards.

전기방사를 이용한 SiO2/nano ionomer 복합 막의 제조 및 고온 PEMFC에의 응용 (Development of the SiO2/Nano Ionomer Composite Membrane for the Application of High Temperature PEMFC)

  • 나희수;황형권;이찬민;설용건
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.569-578
    • /
    • 2011
  • The $SiO_2$ membranes for polymer electrolyte membrane fuel cell (PEMFC) are preapared by electrospinning method. It leads to high porosity and surface area of membrane to accommodate the proton conducting materials. The composite membrane was prepared by impregnating of Nafion ionomer into the pores of electrospun $SiO_2$ membranes. The $SiO_2$:heteropolyacid (HPA) nano-particles as a inorganic proton conductor were prepared by microemulsion process and the particles are added to the Nafion ionomer. The characterization of the membranes was confirmed by field emission scanning electron microscope (FE-SEM), thermogravimetry analysis (TGA), and single cell performance test for PEMFC. The Nafion impregnated electrospun $SiO_2$ membrane showed good thermal stability, satisfactory mechanical properties and high proton conductivity. The addition of the $SiO_2$:HPA nano-particle improved proton conductivity of the composite membrane, which allow further extension for operation temperature in low humidity environments. The composite membrane exhibited a promising properties for the application in high temperature PEMFC.

SiO2 나노 콜로이달 첨가량에 따른 Si3N4의 고온강도 특성 (Characterization of High Temperature Strength of Si3N4 Composite Ceramics According to the Amount of SiO2 Nano Colloidal Added)

  • 남기우;이건찬
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1233-1238
    • /
    • 2009
  • This study analyzed the characterization of high temperature strength of $Si_3N_4$ composite ceramics additive based on variations in the amount of nano colloidal $SiO_2$ added. Semi-elliptical cracks about 100 ${\mu}m$ length were obtained from a Vickers indenter using a load of 24.5 N. The results showed that the heat-treated smooth specimens with $SiO_2$ nano colloidal coating exhibited the highest bending strength at 0.0 wt% $SiO_2$ nano colloidal added, which is amounted to a 187 % increase over that of smooth specimen. Limiting temperature for bending strength of crack-healed zone for bending strength was about 1273 K. However, the bending strength of SSTS-3 and SSTS-4 was considerably increased while that of SSTS-1 and SSTS-2 was decreased at a temperature of 1,573K.

나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향 (Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite)

  • 오정석;이성훈;범석훈;김광제
    • 폴리머
    • /
    • 제37권5호
    • /
    • pp.613-617
    • /
    • 2013
  • 나노입자크기의 케냐프섬유를 폴리프로필렌에 첨가하였을 시, 복합소재의 물성변화를 관찰하였다. 천연크기의 케냐프섬유를 나노입자크기의 케냐프섬유로 대체하였을 시, 그 복합소재의 인장강도, 휨강도, 충격강도, 열변형온도가 증가한 반면에, 용융지수, 연신율(%), 충격강도 등이 감소하였다. 이는 나노입자크기의 케냐프섬유가 폴리프로필렌과 접촉하는 표면적의 증가와 섬유표면에 존재하는 휘발성 추출물질 등의 불순물의 감소에 따른 것으로 판단된다.

Synthesis and Characterization of CdSe/CdS/N-Acetyl-L-Cysteine/Quercetin Nano-Composites and Their Antibacterial Performance

  • Wang, Kunjie;Li, Mingliang;Li, Hongxia;Guan, Feng;Zhang, Deyi;Feng, Huixia;Fan, Haiyan
    • 대한화학회지
    • /
    • 제59권2호
    • /
    • pp.136-141
    • /
    • 2015
  • We have discovered that quercetin, once coated on the CdSe and CdSe-CdS quantum dots (QDs), becoming highly water soluble. In the present work, we have successfully synthesized CdSe/CdS/N-Acetyl-L-Cysteine(NAC)/Quercetin nano-composites in the aqueous solution. The products were characterized using UV-vis spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The transmission electron microscopy (TEM) tests indicated that our nano-composite products are highly stable with homogeneous particle size and great monodispersity. Quercetin coated nano-composite CdSe/CdS/NAC/Quercetin showed different fluorescence behavior from that of CdSe/CdS/NAC. Most amazingly, the synthesized CdSe/CdS/NAC/Quercetin nano-composite exhibits strong antibacterial activity. The combination of the strong fluorescence and its antibacterial activity makes the quercetin modified quantum dots as a potential candidate for cancer targeted therapy and other cancer treatments.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.