• Title/Summary/Keyword: Nano-$TiO_2$

Search Result 563, Processing Time 0.038 seconds

A Comparative Study on Synthesis and Characteristics of LiDAR-detectable Black Hollow-Structured Materials Using Various Reduction Methods (다양한 환원법을 활용한 라이다 인지형 검은색 중공구조 물질의 제조 및 특성 비교 연구)

  • Dahee Kang;Minki Sa;Jiwon Kim;Suk Jekal;Jisu Lim;Gyu-Sik Park;Yoonho Ra;Shin Hyuk Kim
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.56-62
    • /
    • 2024
  • In this study, LiDAR-detectable black hollow-structured materials are synthesized using different reducing agents to evaluate their applicability to LiDAR sensor. Initially, white SiO2/TiO2 core/shell (WST) materials are fabricated via a sol-gel method, followed by a reduction using ascorbic acid (AA) and sodium borohydride (SB). After the reduction, subsequent etching of the SiO2 core leads to the formation of two different black hollow-structured materials (AA-BHT and SB-BHT). The lightness (L*) and near-infrared (NIR) reflectance (R%) of AA-BHT are measured as ca. 19.1 and 34.5 R%, and SB-BHT shows values of ca. 11.5 and 31.8 R%, respectively. While AA-BHT exhibits higher NIR reflectance compared to SB-BHT, it displays slightly lower blackness. Compared with core/shell structured materials, improved NIR reflectance of both AA-BHT and SB-BHT is attributed to the morphology of hollow- structured materials, which increase light reflection at the interface between air and black TiO2 according to the Fresnel's reflection principle. Consequently, both AA-BHT and SB-BHT are effectively detected by the commercially available LiDAR sensors, validating their suitability as black materials for autonomous vehicle and environment.

Surface Characteristics of Anodized Ti-30Nb-xTa Alloys with Ta Content

  • Kim, Eun-Sil;Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.254-254
    • /
    • 2012
  • The purposed of this work was to determine surface charateristics of anodized Ti-30Nb-xTa alloys with Ta content. Samples were prepared by arc melting, followed by followed by homogenization for 12 hr at $1000^{\circ}C$ in argon atmosphere. The electrolyte for anodization treatment was prepared by mixing 465ml $H_2O$ with 35M $H_3PO_4$ and anodized at 180V to 220V. The microstructures of the alloys were examined by X-ray diffractometer (XRD) and optical microscopy (OM). Surface characteristics of anodized Ti-30Nb-xTa alloys was investigated by potentiodynamic test and potentiostatic in 0.9% Nacl solution at $36.5{\pm}1^{\circ}C$. It was observed that the changed ${\alpha}$ phase to ${\beta}$ phase with Ta content.

  • PDF

Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures (ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율)

  • Lee, JeongGwan;Cheon, JongHun;Kim, NaRee;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

The Microwave-assisted Photocatalytic Degradation of Methylene Blue Solution Using TiO2 Balls Prepared by Chemical Vapor Deposition (CVD법으로 제조된 산화티탄 볼과 마이크로웨이브를 이용한 메틸렌블루 수용액의 광촉매분해)

  • Park, Sang-Sook;Park, Jae-Hyeon;Kim, Sun-Jae;Jung, Sang-Chul
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1063-1068
    • /
    • 2008
  • The photocatalytic degradation of methylene blue water solution was carried out by irradiating microwave and UV light simultaneously using $TiO_2$ photocatalyst balls prepared by Chemical Vapor Deposition method. A microwave-discharged electrodeless UV lamp was developed to use microwave and UV simultaneously for photocatalytic reactions. The results of photocatalytic degradation of methylene blue showed that the decomposition rate increased with the microwave intensity, the circulating fluid velocity and auxiliary oxidizing agents added. Especially, the rate constant of $H_2O_2$-added photocatalytic reaction increased about three times from $0.0061min^{-1}$ to $0.0197min^{-1}$ when microwave was additionally irradiated. This study demonstrates that the microwave irradiation can play a very important role in photocatalytic degradation using peroxides although it is not easy to quantitatively assess the effect of microwave on photocatalytic reactions from the experimental data of this study.

Adsorption of Methylene Blue on Titanate Nanotubes Synthesized with Ultra-Small Fe3O4 Nanoparticles

  • Marc, Maciej;Dudek, Miroslaw R.;Koziol, Jacek J.;Zapotoczny, Bartlomiej
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850142.1-1850142.9
    • /
    • 2018
  • Modified titanate nanotubes (TNT) were tested for their adsorption of methylene blue (MB) from water solutions. They were obtained from the $TiO_2$ nanopowder using a standard alkaline hydrothermal method but in the stage of acid washing, when the titanate flakes begin to roll into nanotubes, magnetite nanoparticles were added. The $Fe_3O_4$ magnetic nanoparticles with diameter of around 2 nm and 12 nm were used in the tests. Significantly stronger adsorption of MB was observed when smaller nanoparticles were used compared to using larger nanoparticles and compared to the case of unmodified nanotubes. It was shown that the increased adsorption of MB is associated with a more negative value of ${\zeta}$-potential for titanates modified by the ultra-small nanoparticles. In the adsorption experiment, pH 7 was selected. These results may prove to be of great importance in the case of potential applications corresponding to the use of such material for wastewater purification.

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Characterization of Interfacial Adhesion of Cu-Cu Bonding Fabricated by Thermo-Compression Bonding Process (열가압 접합 공정으로 제조된 Cu-Cu 접합의 계면 접합 특성 평가)

  • Kim, Kwang-Seop;Lee, Hee-Jung;Kim, Hee-Yeoun;Kim, Jae-Hyun;Hyun, Seung-Min;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.929-933
    • /
    • 2010
  • Four-point bending tests were performed to investigate the interfacial adhesion of Cu-Cu bonding fabricated by thermo-compression process for three dimensional packaging. A pair of Cu-coated Si wafers was bonded under a pressure of 15 kN at $350^{\circ}C$ for 1 h, followed by post annealing at $350^{\circ}C$ for 1 h. The bonded wafers were diced into $30\;mm\;{\times}\;3\;mm$ pieces for the test. Each specimen had a $400-{\mu}m$-deep notch along the center. An optical inspection module was installed in the testing apparatus to observe crack initiation at the notch and crack propagation over the weak interface. The tests were performed under a fixed loading speed, and the corresponding load was measured. The measured interfacial adhesion energy of the Cu-to-Cu bonding was $9.75\;J/m^2$, and the delaminated interfaces were analyzed after the test. The surface analysis shows that the delamination occurred in the interface between $SiO_2$ and Ti.

Preparation and Photocatalyric Properties of Organic-Inorganic Hybrid Abaca Cellulose@Titanium Dioxide Composite (유-무기 하이브리드 형 Abaca 셀룰로오스/이산화 티타늄 복합체의 제조 및 이의 광촉매적 특성)

  • Su-A, Kang;Young-Ho, Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • In this study, an organic-inorganic hybrid composite of Abaca nanocellulose and titanium dioxide was prepared. Abaca nanocellulose was prepared by oxidizing Abaca cellulose using TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl) as a catalyst. Titanium dioxide nanoparticles were prepared by the sol-gel method, and a composite was prepared by hybridizing them with nanocellulose. As a result of comparing the properties of the composite and its physical properties according to the change in manufacturing pH, the effect of pH was very large when combining nanocellulose and titanium dioxide, and the optimal bonding performance was shown at pH 8 in this experimental condition. In addition, the prepared composite showed photocatalytic properties, and the higher the content of titanium dioxide, the higher the hydrophilicity of the composite according to UV light irradiation.