• Title/Summary/Keyword: Nano-$TiO_2$

Search Result 563, Processing Time 0.043 seconds

Photocatalytic Properties of $TiO_2$ Coatings Prepared by Cold Spray Process

  • Han, Jong-Hyuck;Lee, Soo-Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.183-184
    • /
    • 2005
  • Four different coatings deposited using cold spray process were studied with two different powder agglomerating techniques (spray d교 and evaporated powder) and using $TiO_2$ nano-sized powders with and without a 10wt% addition of ZnO. Characterization was performed by SEM, XRD and roughness test. Also the photocatalytic effect of the coatings was evaluated. Although the change of powder preparation techniques and the addition of ZnO into $TiO_2$ did not show appreciable variations in the surface morphology and Anatase phase transformation, it did show influence on the surface roughness of the coating, the highest roughness being found in the coatings made by spray powder prepared method. Regarding the photocatalytic effect it was observed that the using the spray dry coating and the addition of ZnO are promoter of purification at higher rates.

  • PDF

Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw (ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동)

  • Kim, S.J.;Moon, Y.P.;Park, G.H.;Jo, H.H.;Kim, W.G.;Son, M.K.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.5
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.

Design and Fabrication of Information Security Films with Microlouver Pattern and ZnO Nano-Ink Filling

  • Kim, Gwan Hyeon;Kim, So Won;Lee, Seong Eui;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.354-359
    • /
    • 2019
  • Information security films that can ensure personal privacy by reducing the viewing angle of display screens were fabricated by microlouver patterning and a ZnO nano-ink filling process. Optical simulation results demonstrated that all the microlouver films showed good security performances. Security performances were evaluated as calculated relative luminance ratios compared between the side and front. Based on the simulation results, microlouver films were fabricated by UV imprint lithography and nano-ink bar coating. However, distortion of the microlouver pattern occurred with the use of high-viscosity nano-inks such as ZrO2 and TiO2, and the CuO-filled microlouver film suffered from very low optical transmittance. Accordingly, the effects of ZnO filling height on security performance were intensively investigated through simulation and experimental measurements. The fabricated microlouver film with a 75-㎛-high ZnO filling exhibited a good relative luminance ratio of 0.75 at a 60° side angle and a transmittance of 44% at a wavelength of 550 nm.

Fabrication of TiO2 Coated Si Nano Particle using Silicon Sawing Sludge (실리콘 절삭 슬러지를 이용한 TiO2 코팅 나노 실리콘 입자의 제조)

  • Seo, Dong Hyeok;Yim, Hyeon Min;Na, Ho Yoon;Kim, Won Jin;Kim, Ryun Na;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2021
  • Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 ㎛ by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.

Fabrication of Nano-sized Titanate Powder via a Polymeric Steric Entrapment Route and Planetary Milling Process

  • Lee, Sang-Jin;Lee, Chung-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.336-340
    • /
    • 2002
  • Pure and nano-sized $TiO_2$ and $CaTiO_3$ powders were fabricated by a polymeric steric entrapment route and planetary milling process. An ethylene glycol was used as a polymeric carrier for the preparation of organic-inorganic precursors. Titanium isopropoxide and calcium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. At the optimum amount of the polymer, the metal cations were dispersed in solution and a homogeneous polymeric network was formed. The dried precursor ceramic gels were turned to porous powders through calcination process. The porous powders were crystallized at low temperatures and the crystalline powders were planetary milled to nano size.

Effect of Performance in Dye-sensitized Solar Cells by PEG Contents (PEG 함량변화가 염료감응형 태양전지의 효율에 미치는 영향)

  • Baek, Hyoung-Youl;Han, Zhen-Ji;Li, Hu;Gu, Hal-Bon;Park, Kyung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.178-181
    • /
    • 2008
  • A solar cell based on dye-sensitized photoelectric conversion was studied by investigating the effects of the amount of polyethylene glycol(PEG), added to the $TiO_2$ paste, on surface morphology of the $TiO_2$ films and on the solar cell performance. Energy conversion efficiency was found to increase with PEG addition up to 20 % by weight of $TiO_2$ and then decrease with further addition due to the aggregation of $TiO_2$ nano particles in the $TiO_2$ film. In this study, the best result of dye-sensitized solar cell was the short circuit current(Isc) of $22.6mAcm^{-2}$, the open circuit voltage (Voc) of 0.73 V, the fill factor (ff) of 0.55 and the overall energy conversion efficiency (${\eta}$) of 9.1 % under illumination with AM 1.5 simulated sunlight.

Improved Photolysis of Water from Ti Incorporated Double Perovskite Sr2FeNbO6 Lattice

  • Borse, P.H.;Cho, C.R.;Yu, S.M.;Yoon, J.H.;Hong, T.E.;Bae, J.S.;Jeong, E.D.;Kim, H.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3407-3412
    • /
    • 2012
  • The Ti incorporation at Fe-site in the double perovskite lattice of $Sr_2FeNbO_6$ (SFNO) system is studied. The Ti concentration optimization yielded an efficient photocatalyst. At an optimum composition of Ti as x = 0.07 in $Sr_2Fe_{1-x}Ti_xNbO_6$, the photocatalyst exhibited 2 times the quantum yield for photolysis of $H_2O$ in presence of $CH_3OH$, than its undoped counterpart under visible light (${\lambda}{\geq}420nm$). Heavily Ti-doped $Sr_2Fe_{1-x}Ti_xNbO_6$ lattice exhibited poor photochemical properties due to the existence of constituent impurity phases as observed in the structural characterization, as well as deteriorated optical absorption. The higher electron-density acquired by n-type doping seem to be responsible for the more efficient charge separation in $Sr_2Fe_{1-x}Ti_xNbO_6$ (0.05 < x < 0.4) and thus consequently displays higher photocatalytic activity. The Ti incorporated structure also found to yield stable photocatalyst.

Thickness dependent dielectric properties of $BaTiO_3$/Sr$TiO_3$ Nano-structured artificial lattices (나노 구조로 된 $BaTiO_3$/Sr$TiO_3$ 산화물 인공격자의 두께 의존적인 유전특성)

  • 김주호;김이준;정동근;김인우;제정호;이재찬
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.56-56
    • /
    • 2003
  • BaTiO$_3$, SrTiO$_3$단일막과 BaTiO$_3$ (BTO)/SrTiO$_3$ (STO) 산화물 인공격자를 pulsed laser deposition (PLD) 법에 의해서 100 nm 두께의 (La,Sr)CoO3 (LSCO) 산화물 전극이 코핑된 MgO 단결정 기판 위에 증착시켰다. 이러한 기판위에서 2 unit cell의 적층 두께를 갖는 BTO/STO 초격자 (=BTO2/STO2)를 100~5 nm까지 변화시켰다. 또한 BTO와 STO 단일막도 같은 두께로 변화시켰다. 이러한 두께 범위에서 BTO, STO 단일막과 초격자의 격자변형에 따른 유전특성을 살펴 보았다. 두께 변화에 따른 단일막과 초격자의 구조 분석은 포항 방사광 가속기의 x-ray 회절에 의해서 이루어졌다. 다양한 두께를 갖는 BTO2/STO2 초격자에서 BTO와 STO 충은 in-plane 방향으로 격자정합을 유지하면서 변형되었다. 두께가 얇아지면서 하부 LSCO영향으로 BTO, STO의 n-plane 격자상수는 LSCO 격자상수 쪽으로 접근하였다. Out-of-plane 방향의 BTO 격자상수는 두께가 얇아지면서 증가하였고 반면에 STO 격자상수는 감소하였다. STO와 BTO 단일막의 격자변형은 두께가 얇아지면서 in-plane 방향으로 압축응력으로 인해 증가하였다. 그러나, 격자부정합도가 큰 BTO격자에서 더 많이 변형되었다. 또한 초격자에서 BTO격자가 BTO 단일막보다 더 많이 변형되었는데 초격자에서는 BTO, STO 두 층의 발달된 변형뿐만 아니라 하부 LSCO/MgO 기판의 영향을 함께 받고 있기 때문이다. 초격자와 단일막의 유전상수를 살펴보면은 두께가 감소하면서 유전상수가 감소하는 size effect을 보이고 있다. 하지만 초격자에서의 유전상수가 단일막보다 우수한 유전특성을 보이고 있다. 이러한 결과로 볼 때 격자변형이 size effect 영향을 끼치는 중요한 요소임을 확인하였다.

  • PDF