• Title/Summary/Keyword: Nano tip

검색결과 187건 처리시간 0.02초

전기방사를 이용한 리그닌 나노섬유의 제조 (Fabrication of Lignin Nanofibers Using Electrospinning)

  • 이은실;이승신
    • 한국의류학회지
    • /
    • 제38권3호
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

광전자 소자 응용을 위한 수직 정렬된 ZnO Nanorod Array를 이용한 계층 나노구조

  • 고영환;유재수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.126-126
    • /
    • 2011
  • 수직으로 정렬된 1차원 ZnO nanorod arrays (NRAs)는 효율적인 반사방지 특성의 기하학적 구조를 갖고 있어, 크기와 모양 그리고 정렬형태의 다양한 설계를 통해 빛의 흡수율과 광 추출효율을 증가시켜 광전소자 및 태양광 소자의 성능을 향상시킬 수 있으며, 최근 이러한 연구에 대한 관심이 집중되고 있다. 본 연구에서는 ZnO NRAs의 넓은 표면적과 불연속적인 독특한 표면을 활용하여 광학적 특성을 효과적으로 개선하였다. 실험을 위해, thermal evaporator를 사용하여 Au와 Ag 그리고 e-beam evaporator를 사용하여 $SiO_2$를 ZnO NRAs 표면에 여러 가지 조건으로 증착하여, 독특한 계층 나노구조의 형성과 광학적 특성을 관찰하였다. 표면 roughness가 큰 FTO/glass 위에 수열합성법을 통해 끝이 뾰족하고, 비스듬히 정렬된 ZnO nano-tip array에 Au를 증착할 경우 ZnO/Au core/shell 구조가 형성되며, Au의 광 흡수율이 매우 크게 증가함을 관찰할 수 있었다. 반면 flat한 표면위에 빽빽하게 수직으로 정렬된 ZnO NRAs를 성장시켜 그 위에 Ag를 증착할 경우, evaporated Ag flux가 ZnO nanorod의 사이에 scattered 되어 ZnO nanorod 기둥의 측면에 직경이 50 nm 이하인 nanoparticles이 decorated 되어 국소표면플라즈몬 현상이 관찰되었으며, 이러한 효과를 통해 입사되는 빛의 흡수율을 효과적으로 증가시킬 수 있었다. 또한, ZnO NRAs의 표면에 $SiO_2$를 e-beam evaporator를 이용하여 증착할 경우, 자연적으로 vapor flux와 ZnO nanorod 사이에 oblique angle이 $80^{\circ}$ 이상으로 증가하여 $SiO_2$ nanorods가 자발적으로 형성되어 ZnO/$SiO_2$ branch 계층형태의 나노구조를 제작할 수 있었다. 이러한 구조는 유효 graded refractive index profile로 인해 기존의 ZnO NRAs보다 개선된 반사방지 특성을 나타냈다. 이러한 계층 나노구조의 광학적 특성을 시뮬레이션을 통해 이론적으로 분석을 통해 광전자 소자의 성능의 개선에 대한 적용 가능성을 조사하였다.

  • PDF

알루미늄 합금의 양극산화 조건에 따른 내구성 평가 (Evaluation of Durability for Al Alloy with Anodizing Condition)

  • 이승준;한민수;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

Influence of polishing systems on roughness and color change of two dental ceramics

  • Maciel, Lucas Campagnaro;Silva, Carlos Frederico Bettcher;de Jesus, Ricardo Huver;da Silva Concilio, Lais Regiane;Kano, Stefania Carvalho;Xible, Anuar Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권4호
    • /
    • pp.215-222
    • /
    • 2019
  • PURPOSE. To evaluate the polishing effect on roughness and color change of pressed and layering ceramics after immersion in coffee solution. MATERIALS AND METHODS. 88 ceramic discs ($1.0mm{\times}10.0mm$) were manufactured - 44 nano-fluorapatite layering ceramics (IPS e.max Ceram. Group C) and 44 pressed lithium disilicate ceramic discs (IPS e. max Press - Group P). Each group was divided into 4 subgroups according to surface treatments: (G) Glaze, (S) Shofu polishing system (Shofu Inc.), (E) Edenta AG polishing System, (KG) $30-{\mu}m$ diamond granulation tip. Surface roughness (Ra) and color change (${\Delta}E$) measurings after the surface treatments were performed, before and 12 days after the immersion in coffee solution. A samples' qualitative analysis was conducted with a scanning electron microscopy (SEM). Data were statistically-treated with one-way-ANOVA and Duncan's tests, apart from paired t-test and Pearson's correlation test (${\alpha}=5%$). RESULTS. The decrescent order, both for surface roughness (Ra) and ${\Delta}E$ for both ceramics were: KG > E > S > G (P<.05). With exception for PG and CG subgroups, which did not present statistical difference between them, all other pressed ceramics subgroups presented smaller Ra values and greater ${\Delta}E$ values than the layering ceramics subgroups (P<.05). CONCLUSION. Although mechanical polishing systems presented intermediate Ra values, their colors were considered clinically acceptable. There is a strong correlation between the surface roughness and the color change of tested ceramics.

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds

  • Nezadi, Maryam;Keshvari, Hamid;Yousefzadeh, Maryam
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.59-69
    • /
    • 2021
  • Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).

α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구 (A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations)

  • 정예리;김진호;이태일
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

수출용 오리엔탈 백합 품종 잎마름병 방제를 위한 감마선 및 화학 대체제 융복합 처리 효과 (Application of Gamma Irradiation and Its Convergent Treatments on Several Varieties of Oriental Hybrid Lily to Control Leaf Blight)

  • 김지훈;구태훈;홍성준;윤성철
    • 식물병연구
    • /
    • 제20권2호
    • /
    • pp.79-86
    • /
    • 2014
  • 화훼 수출 검역에서 기존 메틸브로마이드 훈증보다 경제적이고 친환경적이며 안전한 대안으로서 감마선 융복합 처리 기술을 백합 잎마름병 방제에 적용하였다. 감마선 융복합 처리는 200 Gy 감마선과 이염화이소시안산나트륨(NaDCC) 은나노 입자(NSS)의 화학대체제를 시베리아, 르네부, 소르본느 품종의 절화 백합이 담긴 수출포장용 종이상자에 총 6회로 실시하였다. 감마선 조사 8일 후 백합 잎과 꽃잎에서 측정한 발병율(disease incidence)과 발병도(disease severity)로 분석 결과, 감마선은 소르본느 잎에서 발병도를 약 13-25% 감소시킨 반면, 르네부 잎에서는 발병도를 2-5% 증가시켰다. 화학대체제 처리와 무처리를 비교한 결과 절화 백합 수출현장에서 화학대체제의 잎마름병 발병 억제 효과를 기대할 수 없었다. 한편, 조사 12일 후 감마선 처리 유무에 따른 백합 잎의 엽록소 함량 비교 결과 감마선에 의해 통계적으로 유의하게 감소하였고, 시베리아와 소르본느 꽃의 만개 기간을 0.4-1.2일 연장시켰다. 또한 감마선이 조사된 절화는 화병에서 무처리에 비해 마름이 발생하여 생중량 감소가 뚜렷하였다. 한편, 1과 2 kGy 고선량 감마선은 백합 꽃봉오리 끝 부분을 짙은 갈색으로 변색시키거나 꽃봉오리 목 부분의 꺽임, 봉오리가 개화하지 못하게 하는 등 마름 이외에도 감마선 과도에 의한 품질저해 피해가 나타났다.