• Title/Summary/Keyword: Nano size

Search Result 2,179, Processing Time 0.032 seconds

Dynamic analysis of nanostructure in improving sports equipment assuming sinusoidal shear deformation theory and numerical solution

  • Xinrui Yang;Amir Behshad
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.221-234
    • /
    • 2024
  • In this paper, dynamic response of annular nanoplates in improving sports equipment with surface effect embedded by visco Pasternak fractional foundation is studied. Size effects are evaluated by modified couple stress theory (MCST) and the surface effects are considered by the Gurtin-Murdoch theory. The structural damping effect is considered in this research using Kelvin-Voigt model. Sinusoidal shear deformation theory (SSDT) is applied for mathematical modelling of the nanostructure system. The numerical procedure of differential quadrature (DQ) is presented to determine the dynamic deflection as well as dynamic response of the annular nanoplates. The numerical results dynamic deflection of the nanostructure is considering, including material length scale parameter, spring and damper constants of visco-pasternak fractional foundation, geometrical parameters of annular nanoplates, surface stress effects.

Curcumin-Loaded Human Serum Albumin Nanoparticles Prevent Parkinson's Disease-like Symptoms in C. elegans

  • Arvie Camille V. de Guzman;Md. Abdur Razzak;Joong Hee Cho;Ji Yi Kim;Shin Sik Choi
    • Nanomaterials
    • /
    • v.12 no.5
    • /
    • pp.758-770
    • /
    • 2022
  • Parkinson's disease is one of the most common degenerative disorders and is characterized by observable motor dysfunction and the loss of dopaminergic neurons. In this study, we fabricated curcumin nanoparticles using human serum albumin as a nanocarrier. Encapsulating curcumin is beneficial to improving its aqueous solubility and bioavailability. The curcumin-loaded HSA nanoparticles were acquired in the particle size and at the zeta potential of 200 nm and -10 mV, respectively. The curcumin-loaded human serum albumin nanoparticles ameliorated Parkinson's disease features in the C. elegans model, including body movement, basal slowing response, and the degeneration of dopaminergic neurons. These results suggest that curcumin nanoparticles have potential as a medicinal nanomaterial for preventing the progression of Parkinson's disease.

A Study on the Thermal Conductivity and Mechanical Properties of Electrical Insulation Polymer Composite Materials (실리콘 고분자 복합소재의 열전도도와 기계적 물성에 관한 연구)

  • Won-il Choil;Kye-Kwang Choi
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.37-43
    • /
    • 2024
  • With the development of technology in the electrical and electronic field, research on heat dissipation materials that can efficiently emit and control heat to solve the heat generation problem is being actively conducted. Since heat dissipation materials require electrical insulation and thermal conductivity, the polymer composite material was manufactured by mixing chemically stable silicone resins and ceramic fillers, and thermal conductivity and mechanical properties were observed. At the same filling amount, the larger the particle size and the higher the high thermal conductivity filler was added, the higher the thermal conductivity was, mechanical properties were confirmed to have higher tensile strength and elongation as the particles were smaller and the tissue was denser. After selecting materials in consideration of thermal conductivity and mechanical properties, an appropriate mixing ratio is considered important.

Fabrication of Nano-thin Film Through High-efficiency Evaporation Source and Analysis of Thin Film Characteristics (고효율 증발원을 이용한 나노박막 제작 및 특성)

  • Kwan-Do Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.35-38
    • /
    • 2024
  • High efficiency evaporation source is developed to perform a vacuum deposition process in which a deposition material is heated and vaporized to eject from a solid state to a gaseous state. In order to obtain a uniform thin film, conditions such as the structure of the effusion cell, the distance between the effusion cell and the substrate, nozzle size, and evaporation angle must be optimized. In this experiment, organic material Alq3 and metal Al thin film deposition process was performed using the effusion cell and thin film characteristics was analyzed.

  • PDF

Characteristics of Kinetic Energy Transfer in Collisions Between Fragile Nanoparticle and Rigid Particle on Surface (승화성 나노 탄환입자와 표면위의 나노 고체입자의 충돌에서의 운동에너지 전달 특성)

  • Choi, Min Seok;Lee, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.595-600
    • /
    • 2014
  • The characteristics of kinetic energy transfer during a collision between a rigid target particle on a surface and a fragile bullet particle moving at a high velocity were analyzed using molecular dynamics simulation. Bullet particles made of $CO_2$ were considered and their size, temperature, and velocity were varied over a wide range. The fraction of kinetic energy transferred from the bullet particle to the target particle was almost independent of the former's size or velocity; however, it was sensitively dependent on its temperature, which can be attributed to the change in the bullet rigidity with temperature. This fraction was nearly twice as high for $CO_2$ bullets as for Ar bullets. This result explains the reason for the more superior cleaning performance of $CO_2$ bullets than Ar bullets with regard to contaminants in the 10 nm size range.

Analysis of Attrition Rate of Y2O3 Stabilized Zirconia Beads with Different Microstructure and Mechanical Properties (고에너지 분쇄 매체 지르코니아 Beads의 미세구조 및 기계적 특성에 따른 마모율 분석)

  • Kim, Jung-Hwan;Yoon, Sae-Jung;Hahn, Byung-Dong;Ahn, Cheol-Woo;Yoon, Woon-Ha;Choi, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 2018
  • Particle size reduction is an important step in many technological operations. The process itself is defined as the mechanical breakdown of solids into smaller particles to increase the surface area and induce defects in solids, which are needed for subsequent operations such as chemical reactions. To fabricate nano-sized particles, several tens to hundreds of micron size ceramic beads, formed through high energy milling process, are required. To minimize the contamination effects during high-energy milling, the mechanical properties of zirconia beads are very important. Generally, the mechanical properties of $Y_2O_3$ stabilized tetragonal zirconia beads are closely related to the mechanism of phase change from tetragonal to monoclinic phase via external mechanical forces. Therefore, $Y_2O_3$ distribution in the sintered zirconia beads must also be closely related with the mechanical properties of the beads. In this work, commercially available $100{\mu}m-size$ beads are analyzed from the point of view of microstructure, composition homogeneity (especially for $Y_2O_3$), mechanical properties, and attrition rate.

Application of Mechanical Alloying Method on the Fabrication of Zinc Sulfide Photo-luminescence Powders (ZnS 형광체 분말제조를 위한 기계적합금화법의 응용 연구)

  • Ahn In-Shup;Chong Woo-Hyun;Bae Sung-Yeal;Sung Tek-Kyoung;Park Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.279-283
    • /
    • 2005
  • In this study, the ZnS composite powders for host material in phosphor was synthesized in situ by mechanical alloying. As the mechanical alloying time increases, particle size of ZnS decreases. ZnS powders of $1.85\;\mu{m}$ in a mean size was fabricated by mechanical alloying for 10h. The crystal structures of ZnS powders were investigated by X-ray diffraction and the photo-luminescence properties was evaluated with the optical spectra analyzer. The steady state condition of mechanically alloyed ZnS was obtained as a mean particle size of $2\;\mu{m}$ in 5h milling. The sphalerite and wurtize structures coexist in the ZnS mechanically alloyed for 5h. The ZnS powder mechanically alloyed for 10h grows to the sphalerite structure. And the strong emission peaks of ZnS are observed at 480 nm wave length at the powders of mechanically alloyed for 10h, but the sphalerite and wurtize structures in ZnS coexist and emission peaks are not appeared at the powders of mechanically alloyed for 10h.

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

Optical Properties of Self-assembled InAs Quantum Dots with Bimodal Site Distribution (이중 크기분포를 가지는 자발형성 InAs 양자점의 광특성 평가)

  • Jung, S.I.;Yeo, H.Y.;Yun, I.;Han, I.K.;Lee, J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.308-313
    • /
    • 2006
  • We report a photoluminescence (PL) study on the growth process of self-assembled InAs quantum dots (QDs) under the various growth conditions. Distinctive double-peak feature was observed in the PL spectra of the QD samples grown at the relatively high substrate temperature. From the excitation power-dependent PL and the temperature-dependent PL measurements, the double-peak feature is associated with the ground state transitions from InAs QDs with two different size branches. In addition, the variation in the bimodal size distribution of the QD ensembles with different InAs coverage is demonstrated.

Anodizing of pure Al foil for AAO as a Nanowire Template (Al 양극산화에 의한 나노선재용 AAO template제조)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • AAO template having nano scale pores of high aspect ratio has been prepared through anodizing of aluminum foil in sulfuric acid electrolyte. The effect of anodizing parameters on the pore size and distribution was also examined to obtain the proper AAO as a template material of nanowire. The surface of AAO template prepared was observed by SEM to examine the mean size and distribution of pores generated by the anodizing and Fe nanowires obtained by AC electroforming using AAO template were also observed with TEM to determine the length and shape of them. From the results of work, it was found that the mean size or distribution of pores was influenced significantly by the anodizing parameters such as voltage and temperature of electrolyte. Mean length and aspect ratio of Fe nanowires prepared in the work were found to be $10{\mu}m\;and\;300\;to\;1,000$, respectively.