• Title/Summary/Keyword: Nano size

Search Result 2,179, Processing Time 0.044 seconds

Deposition Technology of Copper Thin Films for Multi-level Metallizations (다층배선을 위한 구리박막 형성기술)

  • 조남인;정경화
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.180-182
    • /
    • 2002
  • Copper thin films are prepared by a chemical vapor deposition technology for multi-level metallzations in ULSI fabrication. The copper films were deposited on TiN/Si substrates in helium atmosphere with the substrate temperature between $120^{\circ}C$ and $300^{\circ}C$. In order to get more reliable metallizations, effects on the post-annealing treatment to the electrical properties of the copper films have been investigated. The Cu films were annealed at the $5\times$10^{-6}$ Torr vacuum condition, and the electrical resistivity and the nano-structures were measured for the Cu films. The electrical resistivity of Cu films shown to be reduced by the post-annealing. The electrical resistivity of 2.2 $\mu$$\Omega$.cm was obtained for the sample deposited at the substrate temperature of $180^{\circ}C$ after vacuum annealed at $300^{\circ}C$. The resistivity variations of the films was not exactly matched with the size of the nato-structures of the copper grains, but more depended on the deposition temperature of the copper films.

  • PDF

Ammonia decomposition over titanium carbides

  • Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.269-273
    • /
    • 2012
  • Ammonia decomposition over titanium carbides were investigated using eight different samples which have been synthesized by TPR (temperature-programmed reduction) method of titanium oxide ($TiO_2$) with pure $CH_4$. The resulting materials which were synthesized using wo different heating rates and space velocity exhibited the different surface areas. These results indicated that the structural properties of these materials have been related to heating rates and space velocity employed. The titanium carbides prepared in this study proved to be active for ammonia decomposition, and the activity changed with the particle size/surface area. These showed the relationship between ammonia decomposition activity and the different active species. Compared to molybdenum carbide, the titanium carbides were one order of magnitude less active, suggesting the correlation between the activity difference and the degree of electron transfer between metals and carbon in metal carbides.

Structural and Electrical Properties of ZrO2 Films Coated onto PET for High-Energy-Density Capacitors

  • Park, Sangshik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2014
  • Flexible $ZrO_2$ films as dielectric materials for high-energy-density capacitors were deposited on polyethylene terephthalate (PET) substrates by RF magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $ZrO_2$ films were dependent on the sputtering pressure and gas ratio. Although $ZrO_2$ films were deposited at room temperature, all films showed a tetragonal crystalline structure regardless of the sputtering variables. The surface of the film became a surface with large white particles upon an increase in the $O_2/Ar$ gas ratio. The RMS roughness and crystallite size of the $ZrO_2$ films increased with an increase in the sputtering pressure. The electrical properties of the $ZrO_2$ films were affected by the microstructure and roughness. The $ZrO_2$ films exhibited a dielectric constant of 21~38 at 1 kHz and a leakage current density of $10^{-6}{\sim}10^{-5}A/cm^2$ at 300 kV/cm.

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

  • Ishihara, Tatsumi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.469-477
    • /
    • 2016
  • The application of nanomaterials for electrodes of intermediate temperature solid oxide fuel cells (SOFC) is introduced. In conventional SOFCs, the operating temperature is higher than 1073 K, and so application of nanomaterials is not suitable because of the high degradation rate that results from sintering, aggregation, or reactions. However, by allowing a decrease of the operating temperature, nanomaterials are attracting much interest. In this review, nanocomposite films with columnar morphology, called double columnar or vertically aligned nanocomposites and prepared by pulsed laser ablation method, are introduced. For anodes, metal nano particles prepared by exsolution from perovskite lattice are also applied. By using dissolution and exsolution into and from the perovskite matrix, performed by changing $P_{O2}$ in the gas phase at each interval, recovery of the power density can be achieved by keeping the metal particle size small. Therefore, it is expected that the application of nanomaterials will become more popular in future SOFC development.

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF

Solvothermal Synthesis and Characterization of Nano-sized Barium Titanate Powder

  • Choi, Kyoon;Kwon, Soon-Gyu;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.124-125
    • /
    • 2006
  • Multilayer ceramic capacitor (MLCC) miniaturization has increased the demand for superfine $BaTiO_3$ powder due to its thin dielectric layer. Hydrothermally synthesized $BaTiO_3$ powder a pseudo-cubic phase resulting in poor dielectric properties due to size effect and hydroxyl ion inclusion in the $BaTiO_3$ lattice. We attempted a superfine (lower than 100 nm) highly tetragonal $BaTiO_3$ powder via a solvothermal method without precipitating agent. The lattice parameters and the relative amounts of tetragonal and cubic phases were determined using Rietveld refinement.

  • PDF

Microstructural and Mechanical Characteristics of In Situ Synthesized Chromium-Nickel-Graphite Composites

  • Pirso, Juri;Viljus, Mart;Letunovits, Sergei;Juhani, Kristjan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.631-632
    • /
    • 2006
  • Cr-C-Ni composites were synthesized in situ from elemental powders of Cr, Ni and C by high energy milling followed by reactive sintering. The milled powders with the grain size in nano-scale were pressed to compacts and sintered. During the following thermal treatment at first the chromium carbide was formed and then the $Cr_3C_2-Ni$ cermets were sintered in one cycle. The interface between the binder phase and the carbide grains of the in situ composite has a good bonding strength as it is not contaminated with oxidation films or other detrimental surface reactions.

  • PDF

A Study of Reduced and Carburized Reactions in Dry-milled $WO_3+Co_3O_4+C$ Mixed Powders with Different Carbon Content

  • Im, Hoo-Soon;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.648-649
    • /
    • 2006
  • The dry-milling technique was used for mixing and crushing oxides and graphite powders. The ratio of ball-to-powder was 30:1 and argon gas was filled in jar. The excess carbon was $10{\sim}20wt%$ of the stoichiometric amount. The dry-milling was carried for 20 hours. The mixed powders were reduced and carburized at $900{\sim}980^{\circ}C$ for 3 hours flowing Ar gas in tube furnace. The dry-milled powders showed the wide diffraction patterns of X-ray. The reactions of reduction and carburization were completed in 3 hours at $980^{\circ}C$. After the reactions, the mean size of WC particles was about 200 nm. The content of free carbon in WC/Co mixed powders was less as the reaction temperature increased.

  • PDF

Production of Nanosized WC Powder by Vapor Phase Reaction

  • Cho, Gi-Chul;Lee, Gil-Geun;Ha, Gook-Hyun;Kim, Byung-Kee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.625-626
    • /
    • 2006
  • In the present study, the focus is on the synthesis of nanosized WC powder by the chemical vapor condensation proces. The synthesized W-C system powder by the CVC process shows W2C, W, WO3 phases and can not shows WC phase. After recarburization heat treatment under mixture gas atmosphere of argon and hydrogen gases, the synthesized W-C system powder fully transformed to the pure WC. The synthesized WC powder after recarburization heat treatment has an average particle size of 20 nm. The nano-sized WC powder can be prepared by the combination of the CVC process and heat treatment methods.

  • PDF