• Title/Summary/Keyword: Nano size

Search Result 2,179, Processing Time 0.029 seconds

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

THE STABILITY OF GAUGE-UZAWA METHOD TO SOLVE NANOFLUID

  • JANG, DEOK-KYU;KIM, TAEK-CHEOL;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.121-141
    • /
    • 2020
  • Nanofluids is the fluids mixed with nanoscale particles and the mixed nano size materials affect heat transport. Researchers in this field has been focused on modeling and numerical computation by engineers In this paper, we analyze stability constraint of the dominant equations and check validate of the condition for most kinds of materials. So we mathematically analyze stability of the system. Also we apply Gauge-Uzawa algorithm to solve the system and prove stability of the method.

The Magnetic Mobility of Biomolecule Sanals of the Lymphatic Primo Vascular System

  • Noh, Young-Il;Hong, Ye-Ji;Shin, Jun-Young;Rhee, Jin-Kyu;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.188-191
    • /
    • 2013
  • The magnetic properties for sanal's mobility inside of the lymphatic primo vascular system, the so-called Kyungrak (or meridian) system, are investigated under a low static magnetic field with the anatomy technology and optical microscope. One sanal with a size of 1 ${\mu}m$ under microscope selected and separated from the primo vessels of the primo vascular system are observed in rabbits' lymphatic vessels around abdominal aorta and placed in PBS solution with petridish. The moving displacement of sanal versus the measuring time of 20 Oe below a magnetic field of 80 Oe is stronger in dominanting dependence according to the x-direction than y-direction.

The Current Status of Supercritical Fluid Extraction Technology and Industrial Applications (초임계유체 추출 기술 및 상업화 현황)

  • Ju Young-Woon;Lee Moon Young;Woo Moon Jea;Byun Sang Yo
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.329-337
    • /
    • 2005
  • Because of their unique properties, supercritical fluids have been known as one of the most promising materials for the future technology. Supercritical fluid technologies have been widely applied to various operations such as extraction, impregnation, nano-particle generation, oxidation, reaction etc. Industrial applications, especially their successful usage of supercritical fluid, have been reviewed. A special case for the first successful industrial application of supercritical $CO_2$ extraction in Korea was reviewed. Its unique characteristics of enriched antioxidant, $'\grmma-tocopherol'$ enabled this industrial application in Korea in spite of its low market price. Also its size and operation conditions were known as world records.

Flow Behavior at the Embossing Stage of Nanoimprint Lithography

  • Jeong, Jun-Ho;Park, Youn-Suk;Shin, Young-Jae;Lee, Jae-Jong;Park, Kyoung-Taik
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.113-119
    • /
    • 2002
  • Nanoimprint lithography (NIL) is a nanofabrication method known to be a low cost method of fabricating nanoscale patterns as small as 6 m. This study is focused on understanding physical phenomena in the embossing of nano/micro scale structures with 100 nm minimum feature size. We present the effects of capillary force and width of stamp groove on flow behavior at the embossing stage through numerical experimentation. We also compare our numerical results with previous experimental results and discuss our results.

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

Investigation of Slury Properties for Aqueous Casting of Nano-Size Barium Titanate (나도 티탄산 바륨의 수계 성형을 위한 슬러리 특성연구)

  • 김상우;신용욱;이해원;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.705-710
    • /
    • 1999
  • Stability and chemical durability for aqueous casting of BaTiO3 slurry with polycarylic acid(PAA) were studied. PAA was well chemisorbed on surface of BaTiO3 powder at neutral pH but did not chemically adsorbed at low pH. The amount of Ba dissolution in aqueous BaTiO3 slurry was abruptly increased at strong acid pH2 and also at high amount of PAA. Protection of Ba dissolution and stability of slurry could be obtained through the optimization of slurry conditions such as pH amount of surfactant and solid content.

  • PDF

STUDIES FOR THE CHARACTER OF THE POROUS SILICA CONTAINING THE NANO-SIZED TIO$_2$, PARTICLE IN THE PORE.

  • Jhun, Hyun-pyo;Kong, Woo-sik;Lee, Kyoung-chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.59-64
    • /
    • 1998
  • In order to lower porosity of the porous silica, titanium alkoxide solution was filled in the pore of silica in the heating-vacuum condition. The specific surface area of modified samples was decreased effectively from 900 m$^2$/g to 100 m$^2$/g. (The aggregation phenomena in modified samples were improved fairly.) Samples were heated at 600 , and then the titanium alkoxide in the pore was decomposed completely to titanium oxide from TGA-DTA measurement. From SEM result, it was evident that titanium oxide did not coat the surface of the silica. The modified samples were analyzed using SEM, DTA-TGA, BET, and UV-visible spectrometer.

  • PDF

High-Precision Slot-Die Coating Machine for Thin Films of Flexible Display (플렉시블 디스플레이용 박막 도포를 위한 초정밀 슬롯다이 코팅장비)

  • Choi, Young-Man;Lee, Seung-Hyun;Jo, Jeongdai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.491-495
    • /
    • 2014
  • We developed a compact high-precision slot-die coating machine for thin-film deposition on a flexible substrate. For smooth and precise coating, air-bearing and linear motor system were employed to minimize velocity ripple. The gap control mechanism is specially designed to have repeatability of gap between nozzle and substrate under 1 ${\mu}m$. Due to extremely precise gap control, the machine can coat thin-films down to 50 nm with $200mm{\times}100mm$ size. A thin film of Ag nano-particle ink is coated for demonstration.

Pyroelectric Characteristics of 0-3 PbTiO3/P(VDF/TrFE) Nanocomposites Thin Films for Infrared Sensing

  • Kwon, Sung-Yeol
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.236-238
    • /
    • 2007
  • [ 0-3PbTiO_3/P$ ](VDF/TrFE) nanocomposites thin films for passive pyroelectric infrared sensor have been fabricated by two-step spin coating technique. 65 wt% VDF and 35 wt% TrFE was formed to a P(VDF/TrFE) poder Nano size $PbTiO_3$ powder was used. 0-3 connectivity of $PbTiO_3$(VDF/TrFE) composites film is achieved and also observed by SEM photography successfully. The dielectric constant, and pyroelectric coefficient measured and compared with P (VDF/TrFE). A very low dielectric constant (13.48 at 1 kHz) and high enough pyroelectric coefficient (3.101 $nC/cm^2$.k at $50^{circ}C$) neasured. This nanocomposites can be used for a new pyroelectric infrared sensor for better performance.