• Title/Summary/Keyword: Nano phosphor

Search Result 77, Processing Time 0.057 seconds

Synthesis and characterization of Y2O3 : Eu3+ red nano phosphor powders using RF thermal plasma (RF 열플라즈마를 이용한 Y2O3:Eu3+ 적색 나노 형광체 분말 합성)

  • Lee, Seung-Yong;Koo, Sang-Man;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.272-279
    • /
    • 2015
  • $Y_2O_3:Eu^{3+}$ is an excellent red-emitting phosphor, which has been widely used for display devices due to highly luminescent property and chemical stability. In this study, $Y_2O_3:Eu^{3+}$ red phosphors were prepared using the solid state reaction and RF thermal plasma synthesis. The particle size of $Y_2O_3:Eu^{3+}$ phosphors obtained by the solid state reaction varied from 10 to $20{\mu}m$, and 30~100 nanometer sized $Y_2O_3:Eu^{3+}$ particles were obtained from a liquid form of raw material through RF thermal plasma synthesis without an additional heat treatment. Photoluminescence measurements of the obtained $Y_2O_3:Eu^{3+}$ particles showed a red emission peak at 611 nm ($^5D_0{\rightarrow}^7F_2$). PL intensity of red nano phosphors prepared by RF thermal plasma synthesis was comparable to that of red phosphors prepared by the solid state reaction, indicating that nano-sized $Y_2O_3:Eu^{3+}$ red phosphors could be successfully synthesized using one-step process of RF thermal plasma.

Preparation and Luminescene properties with invisible inoranic phosphors of nano size (나노크기의 비가시 무기형광체 제조와 발광특성)

  • Jeong, Jae-Hoon;Yun, Hyun;Jang, Gyu-Hwan;Shin, Sang-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.461-462
    • /
    • 2008
  • $BaMgAl_{10}O_{17}$:Mn, $Eu^{2+}$ green phosphors has been synthesized by the solid state reaction. Green phosphors of nano-size were manufactured in short time by shake method. which were easily manufactured respectively general method. Green phosphors of nano size were control additive, size of $ZrO_3$ ball, shake time and weight of ball in toluene. In result that green phosphors were obtained particle size of 140nm~150nm. The characteristics of fired samples were obtained by 365nm and 380nm excitation source under ultraviolet. In result that the highest PL intensity were observed in wavelength of 365nm.

  • PDF

Hydrothermal synthesis and photoluminescence properties of nanocrystalline $GdBO_3:Eu^{3+}$ phosphor

  • Kim, Tae-Hyung;Kang, Shin-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.717-720
    • /
    • 2005
  • Nanocrystalline $GdBO_3:Eu^{3+}$ was prepared by a hydrothermal method. The as-synthesized powders were spherical shaped agglomerates of nano particles. The luminescent properties were compared with samples synthesized by conventional solid-state reaction method. Both the photoluminescence intensity and chromaticity were improved and a red-shift in the CT band was observed for the hydrothermally synthesized samples.

  • PDF

Precursor Process Designing to Synthesize Nano-sized Phosphors

  • Kim, Soo-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

Development of flat type back-lamp using carbon nano tubes grown on glass substrate (유리기판 위에 성장된 카본나노튜브를 이용한 고휘도 램프 특성)

  • Lee, Yang-Doo;Lee, Duck-Jung;Park, Jeung-Hoon;Yoo, Jae-Eun;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.89-92
    • /
    • 2002
  • Carbon nano tubes(CNTs) have been reported as field emission source because has a sharp tip, a high aspect tip, high chemical stability, high mechanical strength and low work function properties. In this study, we fabricated successfully the back-lamp of the I-inch flat type using CNTs, which was grown directly on cathode substrate of sodalime glass at low temperature. The brightness of CNT back-lamp is measured to $14 Kcd/m^{2}$ at $2000V_{dc}$ in spacing of $500{\mu}m$. And, the emission properties of packaged CNT back-lamp was analyzed as function of applying voltage and times.

  • PDF

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.

Nano Dispersion of Aggregated Y2O3:Eu Red Phosphor and Photoluminescent Properties of Its Nanosol (응집된 Y2O3:Eu Red 형광체의 나노분산 및 나노졸의 형광특성)

  • Lee, Hyun Jin;Ban, Se Min;Jung, Kyeong-Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.100-106
    • /
    • 2017
  • Nanosized and aggregated $Y_2O_3:Eu$ Red phosphors were prepared by template method from metal salt impregnated into crystalline cellulose. The particle size and photoluminescent property of $Y_2O_3:Eu$ red phosphors were controlled by variation of the calcination temperature and time. Dispersed nanosol was also obtained from the aggregated $Y_2O_3:Eu$ Red phosphor under bead mill wet process. The dispersion property of the $Y_2O_3:Eu$ nanosol was optimized by controlling the bead size, bead content ratio and milling time. The median particle size ($D_{50}$) of $Y_2O_3:Eu$ nanosol was found to be around 100 nm, and to be below 90 nm after centrifuging. In spite of the low photoluminescent properties of $Y_2O_3:Eu$ nanosol, it was observed that the photoluminescent property recovered after re-calcination. The dispersion and photoluminescent properties of $Y_2O_3:Eu$ nanosol were investigated using a particle size analyzer, FE-SEM, and a fluorescence spectrometer.

Study on Fabrication and Photoluminescent Properties of Fine Phosphor Film for Application of Radiation Image Sensor (방사선 영상센서 적용을 위한 미세 발광체 필름 제조 및 광학적 특성에 관한 연구)

  • Kang, Sang-Sik;Choi, Young-Zoon;Lee, Kwang-Oop;Moon, Yong-Soo;Kim, Mi-Young;Lee, Sang-Bong;Jung, Bong-Jae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.25-28
    • /
    • 2010
  • In this paper, the fabrication and feasibility study of clinical application with euripium doped gadollium oxide ($Gd_2O_3$:Eu) nano phosphor derived by low-temperature solution combustion method. From the fabricated phosphor, the photoluminescent characteristic and linearity as a function of phosphor film thickness were investigated to evaluate x-ray converstion properties. From the experimental results, the luminescent intensity was $2945pC/cm^2$-mR at $270{\mu}m$ $Gd_2O_3$:Eu film and this value is higher 1.2 time the conventional bulk phosphor, which is possible to imaging acquisition. And good linearity was shown at x-ray exposure range for clinical diagnostic application.