• Title/Summary/Keyword: Nano oxide layer

Search Result 280, Processing Time 0.036 seconds

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

Study on Improvement of Corrosion Resistance and Wear Resistance by Anodizing and Sealing Treatment with Nano-diamond Powder on aluminum (알루미늄의 아노다이징과 나노 다이아몬드 분말 봉공처리에 의한 내식성과 내마모성 향상에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.121-127
    • /
    • 2014
  • In this study, in order to improve corrosion resistance and wear resistance of aluminum, surface treatment was made by anodizing with oxalic acid solution and sealing with nano-diamond powder. Average size of nano-diamond powder was 30nm. Anodizing with oxalic acid made many pores in the aluminum oxide layer. Pore size and oxide thickness were investigated by scanning electron microscope (SEM). Pore size increased as temperature increased and voltage increased. It was possible to make oxide layer with pore diameter more than 50 nm. Oxide thickness increased as temperature and voltage and treatment time increased. Oxide layer with above $10{\mu}m$ thickness was made. Aluminum oxide layer with many pores was sealed by water with nano-diamond powder. Surface morphology was investigated by SEM. After sealing treatment with nano-diamond powder, corrosion resistance, wear resistance and hardness increased.

Positive Exchange Bias in Thin Film Multilayers Produced with Nano-oxide Layer

  • Jeon, Byeong-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.304-305
    • /
    • 2013
  • We report a positive exchange bias (HE) in thinmultilayered filmscontaining nano-oxide layer. The positive HE, obtained for our system results from an antiferromagnetic coupling between the ferromagnetic (FM) CoFe and the antiferromagnetic (AFM) CoO layers, which spontaneously form on top of the nano-oxide layer (NOL). The shift in the hysteresis loop along the direction of thecooling field and the change in the sign of exchange bias are evidence of antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. Our calculation indicates that uncompensated oxygen moments in the NOL results in antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. One of the interesting features observed with our system is that it displays the positive HE even above the bulk Neel temperature (TN) of CoO. Although the positive HEsystem has a different AFM/FM interfacial spin structure compare to that of the negative HE one, the results of the angular dependence measurements show that the magnetization reversal mechanism can be considered within the framework of the coherent rotation model.

  • PDF

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF

Nonvolatile Memory Characteristics of Double-Stacked Si Nanocluster Floating Gate Transistor

  • Kim, Eun-Kyeom;Kim, Kyong-Min;Son, Dae-Ho;Kim, Jeong-Ho;Lee, Kyung-Su;Won, Sung-Hwan;Sok, Jung-Hyun;Hong, Wan-Shick;Park, Kyoung-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2008
  • We have studied nonvolatile memory properties of MOSFETs with double-stacked Si nanoclusters in the oxide-gate stacks. We formed Si nanoclusters of a uniform size distribution on a 5 nm-thick tunneling oxide layer, followed by a 10 nm-thick intermediate oxide and a second layer of Si nanoclusters by using LPCVD system. We then investigated the memory characteristics of the MOSFET and observed that the charge retention time of a double-stacked Si nanocluster MOSFET was longer than that of a single-layer device. We also found that the double-stacked Si nanocluster MOSFET is suitable for use as a dual-bit memory.

Characterization of Titanium Implant Anodized in Various Electrolytes

  • Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Park, Joon-Bong;Hur, Yin-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.43-46
    • /
    • 2002
  • Commercial titanium rod was anodized in three types of electrolytes such as 0.06 mol/L $\beta-glycerophosphate+0.3mol/L$ calcium acetate, 0.06mol/L $\beta-glycerophosphate+0.3mol/L$ sodium acetate and 0.06 mol/L $\beta-glycerophosphate+5mol/L$ calcium phosphate. The titanium oxide layer $(TiO_2)$ was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron spectroscopy chemical analysis (ESCA). Numerous micropores were observed on the titanium oxide layer by SEM. The diameter of micropores increased with the increase of electrolytic voltage. The titanium oxide layer was composed of anatase structure. The phosphorous element was detected at 130 eV binding energy, but calcium was not found in the oxide layer because of lower contents. After anodizing the oxide layer was etched in the 30g/L NaOH solution at $80^{\circ}C$ for 1hr. The surroundings of micropores were much more smoothed and rounded than before alkaline etching.

Study on Anodizing at Constant Current for Sealing Treatment of Nano-diamond Powder (나노 다이아몬드 분말 봉공처리 적용을 위한 정전류에서의 알루미늄 양극산화 제조 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • In this study, an aluminum oxide layer for sealing treatment of nano-diamond powder was synthesized by anodizing under constant current. The produced pore size and oxide thickness were investigated using scanning electron microscopy. The pore size increased as the treatment time increased, current density increased, sulfuric acid concentration decreased, which is different from the results under constant voltage, due to a dissolution of the oxide layers. The oxide layer thickness by the anodizing increased as temperature, time, and current density increased. The results of this study can be applied to optimize the sealing treatment process of nano-diamond particles of 4-10 nm to enhance the resistances of corrosion and wear of the matrix.