• 제목/요약/키워드: Nano indentation

검색결과 214건 처리시간 0.032초

나노 인덴테이션에 의한 나노재료의 경도예측 (1) 나노 인덴테이션에서 압자 밑 재료의 나노거동 (Nano-behavior of material beneath an indenter in nanoindentation)

  • 김진;박준원;김영석;이승섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.111-115
    • /
    • 2003
  • Nanoindentation is simply an indentation test in which the length scale of the penetration is measured in nanometres rather than microns or millimetres, the latter being common in conventional hardness tests. Three-dimensional molecular dynamics simulations have been conducted to evaluate the nanoindentation test. Molecular dynamics simulations were carried out on single crystal copper by varying crystal orientations to investigate nano-behavior of material beneath an indenter in nanoindentation. Morse potential function was used as an interatomic force between indenter and thin film. The result of the simulation shows that crystal orientation significantly influenced the slip system, dislocation nucleation and dislocation behavior.

  • PDF

나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구 (A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM)

  • 윤성원;김정원;강충길
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

미소 기전 시스템용 니켈 박막의 기계적 물성 측정 (Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application)

  • 백동천;박태상;이순복;이낙규;최태훈;나경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II) (Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II))

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Characterization and Application of DLC Films Produced by New Combined PVD-CVD Technique

  • Chekan, N.M.;Kim, S.W.;Akula, I.P.;Jhee, T.G.
    • 열처리공학회지
    • /
    • 제23권2호
    • /
    • pp.75-82
    • /
    • 2010
  • A new advanced combined PVD/CVD technique of DLC film deposition has been developed. Deposition of a DLC film was carried out using a pulsed carbon arc discharge in vapor hydrocarbon atmosphere. The arc plasma enhancing CVD process promotes dramatic increase in the deposition rate and decrease of compressive stress as well as improvement of film thickness uniformity compared to that obtained with a single PVD pulsed arc process. The optical spectroscopy investigation reveals great increase in radiating components of $C_2$ Swan system molecular bands due to acetylene molecules decomposition. AFM, Raman spectroscopy, XPS and nano-indentation were used to characterize DLC films. The method ensures obtaining a new superhard DLC nano-material for deposition of protective coatings onto various industrial products including those used in medicine.

RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성 (Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process)

  • 손정일;김광수
    • 한국재료학회지
    • /
    • 제30권4호
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

유도초음파 분산 특성을 이용한 박판의 탄성계수 측정 (Measurement of Elastic Constants of Thin Metallic Foil by Guided Wave Dispersion Characteristics)

  • 이동진;조윤호;장강원;조승현;안봉영
    • 비파괴검사학회지
    • /
    • 제32권1호
    • /
    • pp.41-46
    • /
    • 2012
  • MEMS/NEMS 구조체의 개발과 응용기술의 발달로 박판 및 박막의 기계적 물성 평가에 대한 요구가 점차 늘어나고 있다. 기계적 물성은 주로 인장시험이나 초음파의 속도 측정으로 평가되어 왔으나, 박판/박막 구조의 경우 기존의 기술로는 측정에 한계가 있어 나노압입시험법, 유도초음파법 등의 새로운 기술이 개발되고 있다. 본 연구에서는 박판 구조의 금속재료의 탄성계수를 평가하기 위하여 EMAT으로 송수신된 박판내에서의 유도초음파 진행 속도를 측정하였으며, 이론적으로 계산된 유도초음파 군속도와 실험적인 군속도의 최적화 과정을 통해 최종적으로 박판의 탄성계수를 평가하였다. 두께 $50{\mu}m$의 니켈 박판에서 측정된 영률은 201.6 GPa이었으며, 나노압입시험법으로 측정된 207 GPa, 참고문헌의 203.7 GPa과 비교하면 약 3% 내에서 일치하는 결과이다.

마그네트론 스퍼터링 시스템을 이용한 정형외과용 PEEK의 타이타늄/하이드록시아파타이트 이중 코팅층의 표면 특성 분석 (Surface Characteristics of Titanium/Hydroxyapatite Double Layered Coating on Orthopedic PEEK by Magnetron Sputtering System)

  • 강관수;정태곤;양재웅;우수헌;박태현;정용훈
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.164-171
    • /
    • 2018
  • In this study, we have fabricated pure titanium (Ti)/hydroxyapatite (HA) double layer coating on medical grade PEEK from magnetron sputtering system, an investigation was performed whether the surface can be had more improve bio-active for orthopedi/dental applications than that of non-coated one. Pure Ti and HA coating layer were obtained by a radio-frequency and direct current power magnetron sputtering system. The microstructures surface, mechanical properties and wettability of the pure Ti/HA double layer deposited on the PEEK were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nano-indentation, and contact angle test. According to the EDS and XRD results, the composition and crystal structure of pure Ti and HA coated surface were verified. The elastic modulus and hardness value were increased by pure Ti and HA coating, and the pure Ti/HA double layer coating surface has the highest value. The contact angle showed higher value for pure Ti/HA double layered coating specimens than that of non-coated (PEEK) surface.

Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성 (Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting)

  • 서주원;임상엽;진형하;천영범;강석훈;한흥남
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF