• 제목/요약/키워드: Nano gas sensors

검색결과 81건 처리시간 0.027초

수열합성법으로 제조된 Co3O4 분말을 사용한 후막 가스센서의 가스감지 특성 (The Gas Sensing Properties of Thick Film Gas Sensor Using Co3O4 Powder Prepared by Hydrothermal Reaction Method)

  • 김광희;김정규;박기철
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.406-411
    • /
    • 2011
  • $Co_3O_4$ thick film gas sensor using the powder prepared by hydrothermal reaction method(HRM) was fabricated. For comparison study, we also prepared the sensor using commercial $Co_3O_4$ powder under the same fabrication conditions. Sensitivity, time response, and selectivity of them to variable gases such as iso-$C_4H_{10}$, CO, $NH_3$, and $CH_4$ were investigated. The sensor from the powder prepared by HRM showed higher sensitivity to every gas than those from commercial powder. For iso-$C_4H_{10}$ gas, the sensitivities of both sensor to 100 ppm are 160 % and 40 %, respectively. Time response and selectivity of the sensor using the powder prepared by HRM were better than those of the sensor using commercial powder.

A Facile Method for the Synthesis of Freestanding CuO Nanoleaf and Nanowire Films

  • Zhao, Wei;Jung, Hyunsung
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.360-364
    • /
    • 2018
  • A facile method to fabricate freestanding CuO nanoleaves and CuO nanowires-based films was demonstrated. $Cu(OH)_2$ nanoleaves and nanowires were prepared by a hydrolysis reaction in aqueous solution including pyridine and NaOH with the tailored concentrations at room temperature. The films of freestanding CuO nanoleaves and CuO nanowires can be successfully obtained via the simple vacuum infiltration following a thermal dehydration reaction. The morphologies and crystallinity of the $Cu(OH)_2$ nanoleaves/nanowires and CuO nanoleaves/nanowires were characterized by XRD, SEM, TEM and FT-IR. The films fabricated with freestanding CuO nanoleaves and nanowires in this study may be applicable for building high-efficiency organic binder-free devices, such as gas sensors, batteries, photoelectrodes for water splitting and so on.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

반도체 가스 센서 어레이의 제작 및 폭발성가스 감응 특성 (Fabrication of Semiconductor Gas Sensor Array and Explosive Gas-Sensing Characteristics)

  • 이대식;정호용;반상우;이민호;허증수;이덕동
    • 대한전자공학회논문지SD
    • /
    • 제37권11호
    • /
    • pp.9-17
    • /
    • 2000
  • 폭발성 가스의 종류 및 그 양을 검지하기 위한 10개의 개별 센서가 한 기판위에 집적된 센서어레이를 개발했다. 이 센서어레이는 각종 가스에 대해 다양한 감도 패턴을 가지며, $SnO_2$를 모물질로 하는 10개의 산화물 반도체 가스센서로 구성하였다. 나노사이즈이며 큰 비표면적을 가진 모물질에 서로 다른 첨가물을 첨가하여 감지물질를 제작함으로써 저농도에 대한 감도 및 재현성을 높였고, 센서어레이 전반에서 균일한 온도 분포가 되도록 설계하였다. $400^{\circ}C$에서 동작하는 센서어레이로부터 얻은 감도를 이용하여 주성분 분석 기법을 통해 폭발 하한값의 범위에서 부탄, 프로판 그리고 메탄 등과 같은 폭발성 가스의 종류 및 양을 신뢰성 있게 식별할 수 있었다.

  • PDF

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작 (Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure)

  • 전태선;이성호;김용신
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

균일침전법을 이용한 SnO2 나노분말의 H2 감지 특성 (H2 gas sensing characteristics of SnO2 nano-powdersprepared by homogeneous precipitation method)

  • 김영복;이운영;박진성
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.361-368
    • /
    • 2008
  • Nanosized $SnO_2$ particles were synthesized by homogeneous precipitation method using tin chloride ($SnCl_4{\cdot}5H_{2}O$) and urea ($CO(NH_2)_2$). The powders were heated at $500^{\circ}C$ and $600^{\circ}C$ for 2h. The crystal structure, microstructure, thermal behavior, specific surface area were analyzed using XRD, FE-SEM, TGA and BET, respectively. The initial resistance and the $H_2$ sensing properties were measured as a function of ${Sb_2}{O_3}$ and Pd doping concentrations. The resistance was decreased with the addition of ${Sb_2}{O_3}$ and the sensitivity for $H_2$ gas was increased with the addition of Pd. Thus, the optimum $H_2$ gas sensing property was obtained in the 0.25.mol% ${Sb_2}{O_3}$ and 1.w% added $SnO_2$ powders.

MOS-FET구조의 MWCNT 가스센서에서 Vgs의 변화에 따른 NOx 가스 검출 특성 (NOx Gas Detection Characterization with Vgs in the MWCNT Gas Sensor of MOS-FET Type)

  • 김현수;박용서;장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.257-261
    • /
    • 2014
  • Carbon nanotubes (CNT) has the excellent physical characteristics in the sensor, medicine, manufacturing and energy fields, and it has been studied in those fields for the several years. We fabricated the NOx gas sensors of MOS-FET type using the MWCNT. The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$ (gate-source voltage) with the ambient temperature. The gas sensor absorbed the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was reduced by the NOx gas molecules accumulated on the MWCNT surface. Furthermore, when the voltage ($V_{gs}$) was applied to the gas sensor, the term of the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the ambient temperature of $40^{\circ}C$. We also obtained the adsorption energy ($40^{\circ}C$) using the Arrhenius plots by the reduction of resistance due to the $V_{gs}$ voltage variations. As a result, we obtained that the adsorption energy also was increased with the increasement of the applied $V_{gs}$ voltages.

가스 센서용 ZnO, SnO2 박막의 이방성 식각을 위한 mask 재료의 식각 선택도 조사 (Etch selectivities of mask materials for anisotropic dry etching of gas sensing ZnO and SnO2 films)

  • 박종천;조현
    • 한국결정성장학회지
    • /
    • 제21권4호
    • /
    • pp.164-168
    • /
    • 2011
  • 고이온밀도 플라즈마 식각에 의한 고종횡비, 고이방성을 갖는 ZnO, $SnO_2$ 나노 구조 가스 감응층 형성을 위하여 mask 재료들과의 식각 선택도를 조사하였다. $25BCl_3$/10Ar ICP 플라즈마에서는 ZnO와 Ni 간 5.1~6.1 범위의 식각 선택도가 확보된 반면에 Al의 경우 효율적인 식각 선택도를 확보할 수 없었다. $25CF_4$/10Ar ICP 플라즈마에서는 ZnO와 Ni 간에 7~17 범위의 높은 식각 선택도를 얻을 수 있었다. $SnO_2$$SnF_x$ 식각 생성물의 높은 휘발성에 기인하여 Ni에 비해 매우 높은 식각 속도를 나타내었고, 최고치 약 67의 매우 높은 식각 선택도를 확보하였다.

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M.;Yahia, I. S.;Zahran, H.Y.;Ibrahim, M.
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1437-1443
    • /
    • 2018
  • In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.