DOI QR코드

DOI QR Code

NOx Gas Detection Characterization with Vgs in the MWCNT Gas Sensor of MOS-FET Type

MOS-FET구조의 MWCNT 가스센서에서 Vgs의 변화에 따른 NOx 가스 검출 특성

  • Kim, Hyun-Soo (Department of Electrical Engineering, Gachon University) ;
  • Park, Yong-Seo (Department of Electrical Engineering, Gachon University) ;
  • Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
  • Received : 2014.02.21
  • Accepted : 2014.03.24
  • Published : 2014.04.01

Abstract

Carbon nanotubes (CNT) has the excellent physical characteristics in the sensor, medicine, manufacturing and energy fields, and it has been studied in those fields for the several years. We fabricated the NOx gas sensors of MOS-FET type using the MWCNT. The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$ (gate-source voltage) with the ambient temperature. The gas sensor absorbed the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was reduced by the NOx gas molecules accumulated on the MWCNT surface. Furthermore, when the voltage ($V_{gs}$) was applied to the gas sensor, the term of the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the ambient temperature of $40^{\circ}C$. We also obtained the adsorption energy ($40^{\circ}C$) using the Arrhenius plots by the reduction of resistance due to the $V_{gs}$ voltage variations. As a result, we obtained that the adsorption energy also was increased with the increasement of the applied $V_{gs}$ voltages.

Keywords

References

  1. J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
  2. U. S. Jo, S. I. Mun, Y. J. Kim, Y. H. Lee, and B. G. Ju, J. KIEEME, 17, 294 (2004).
  3. B. L. Allen, P. D. Kichambare, and A. Star, Adv. Mater., 19, 1439 (2007). https://doi.org/10.1002/adma.200602043
  4. T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley, Appl. Nano. Lett., 3 (2003).
  5. S. J. Sim and J. P. Kim, J. Kor. Inst. Eng. & Chem., 14, 31 (2011).
  6. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  7. J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imsaka, and M. Hare, Sensor and Act. B: Chem, 114, 943 (2006). https://doi.org/10.1016/j.snb.2005.08.043
  8. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M.M.C. Cheng, Sensor and Act B: Chem., 157, 310 (2011). https://doi.org/10.1016/j.snb.2011.03.035
  9. E. H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux, and E. Llobet, Thin Solid Films, 515, 8322 (2007). https://doi.org/10.1016/j.tsf.2007.03.017
  10. T. Ueda, S. Katsuki, N. Heidari Abhari, T. Ikegami, F. Mitsugi, and T. Nakamiya, Surf. Coat. Technol., 520, 5325 (2008).
  11. H. S. Kim and K. U. Jang, J. KIEEME, 26, 325 (2013).
  12. H. S. Kim, S. H. Lee, and K. U. Jang, J. KIEEME, 26, 707 (2013).
  13. M. K. Kwon and Y. T. Hong, J. KIEEME, 22, 38 (2009).
  14. W. J. Lee, M. K. Choi, and K. U. Jang, J. KSDIT, 11, 55 (2012).
  15. A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, Sensor and Act. B, 171, 25 (2012).