• 제목/요약/키워드: Nano ceramic

검색결과 731건 처리시간 0.023초

Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements

  • Lee, Jung-Jin;Choi, Jung-Yun;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권2호
    • /
    • pp.130-137
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS. Groups treated with the nano-structured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성 (Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process)

  • 정다솔;김동현;정현성
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.298-305
    • /
    • 2019
  • We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

분자량이 조절된 폴리카보실란으로부터 제조한 SiC Fiber의 특성분석 (Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight)

  • 신동근;류도형;김영희;김형래;박홍식;김현이
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.593-598
    • /
    • 2005
  • Polycarbosilane was synthesized by the Kumada rearrangement of polydimethylsilane in the presence of zeolite (ZSM-5) as a catalyst at $350^{\circ}C$. The prepared polycarbosilane had very low molecular weight ($M_w=500$), so that it was not suitable to fabricate SiC fiber by melt spinning. Further polymerization of PCS was conducted around $400^{\circ}C$ to obtain spinnable polycarbosilane. After polymerization, the polycarbosilanes were isolated by distillation according to the molecular weight distributions. The PCS with a controlled molecular weight distribution was spun into continuous polycarbosilane green fibers. The PCS green fiber was successfully transformed into silicon oxycarbide fiber. The room temperature strength of the SiC fiber was around 1.5 - 1.8 GPa. The oxidation behavior and the tensile strength after oxidation were also evaluated.

MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가 (Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic)

  • 윤제정;전명표;신효순;남산
    • 한국전기전자재료학회논문지
    • /
    • 제27권11호
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동 (High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications)

  • 이재춘;권혁천;권영필;박성;장진식;이종호;김주선;이해원
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름 (High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate)

  • 이성태;김치헌;김효태
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.95-99
    • /
    • 2018
  • 최근 고집적 고출력 전자 패키지의 효율적인 열전달을 위한 기판 및 방열소재로서 절연성 고열전도 필름의 수요가 커지고 있어, 알루미나, 질화알루미늄, 질화보론, 탄소나노튜브 및 그래핀 등의 고열전도 필러소재를 사용한 고방열 복합소재에 대한 많은 연구가 이루어지고 있다. 그 중에서도 육방정 질화보론(h-BN) 나노시트가 절연성 고열전도 필러 소재로서 유력한 후보 물질로 선택되고 있다. 본 연구는 이 h-BN 나노시트와 PVA로 된 세라믹/폴리머 복합체 필름의 방열특성 향상에 관한 것이다. h-BN 나노시트는 h-BN 플레이크 원료 분말을 유기용매를 사용한 볼밀링과 초음파 처리에 의한 물리적 박리공정으로 만들었으며, 이를 사용한 h-BN/PVA 복합 필름을 제조한 결과 성형된 복합필름의 면방향과 두께방향 열전도도는 50 vol%의 필러함량에서 각각 $2.8W/m{\cdot}K$$10W/m{\cdot}K$의 높은 열전도도가 나타났다. 이 복합필름을 PVA의 유리전이온도 이상에서 일축 가압하여 h-BN 판상분말의 얼라인먼트를 향상시킴으로써 면방향 열전도도를 최대 $13.5W/m{\cdot}K$까지 증가시킬 수 있었다.

Synthesis of Ceria Nanosphere by Ultrasonic Spray Pyrolysis

  • Kim, Jong-Young;Kim, Ung-Soo;Cho, Woo-Seok
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.249-252
    • /
    • 2009
  • Nanocrystalline ceria particles were prepared by using the ultrasonic spray pyrolysis method. The prepared ceria particles were found to be spherical and non-agglomerated by the SEM and TEM analyses. It was found that carrier gas influences the size and morphology. It was found that the air stream of carrier gas results in porous agglomerated structure of ceria abrasives, whereas solid nano-sphere can be obtained in a more oxidizing atmosphere.