• Title/Summary/Keyword: Nano aluminum powder

Search Result 57, Processing Time 0.026 seconds

Formation of Aluminum Hydroxides by Hydrolysis of Nano and Micro Al Powders (나노 및 마이크로 알루미늄의 가수분해에 의한 알루미늄 수산화물의 형성)

  • Oh Young Hwa;Lee Geunhee;Park Joong Hark;Rhee Chang Kyu;Kim Whung Whoe;Kim Do Hyang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2005
  • A formation of aluminum hydroxide by hydrolysis of nano and micro aluminum powder has been studied. The nano aluminum powder of 80 to 100 nm in diameter was fabricated by a pulsed wire evaporation (PWE) method. The micro powder was commercial product with more than $10\;{\mu}m$ in diameter. The hydroxide type and morphology depending on size of the aluminum powder were examined by several analyses such as XRD, TEM, and BET. The hydrolysis procedure of micro aluminum powder was different from that of nano aluminum powder. The nano aluminum powder after immersing in the water was transformed rapidly to a nano fibrous boehmite, accompanying with a remarkable temperature increase, and then further transformed slowly to a stable bayerite. However, the micro powder was changed to the stable bayerite slowly and directly. The formation of fibrous aluminum hydroxide from nano aluminum powder might be due to the fine cracks which were formed by hydrogen gas pressure on the surface hydroxide layer during hydrolysis. The nano powder with large specific surface area and small size reacted more actively and faster than the micro powder, and transformed to meta-stable hydroxide in relatively short reaction time. Therefore, the formation of fibrous boehmite is special characteristic of hydrolysis of nano aluminum powder.

Study on Improvement of Corrosion Resistance and Wear Resistance by Anodizing and Sealing Treatment with Nano-diamond Powder on aluminum (알루미늄의 아노다이징과 나노 다이아몬드 분말 봉공처리에 의한 내식성과 내마모성 향상에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.121-127
    • /
    • 2014
  • In this study, in order to improve corrosion resistance and wear resistance of aluminum, surface treatment was made by anodizing with oxalic acid solution and sealing with nano-diamond powder. Average size of nano-diamond powder was 30nm. Anodizing with oxalic acid made many pores in the aluminum oxide layer. Pore size and oxide thickness were investigated by scanning electron microscope (SEM). Pore size increased as temperature increased and voltage increased. It was possible to make oxide layer with pore diameter more than 50 nm. Oxide thickness increased as temperature and voltage and treatment time increased. Oxide layer with above $10{\mu}m$ thickness was made. Aluminum oxide layer with many pores was sealed by water with nano-diamond powder. Surface morphology was investigated by SEM. After sealing treatment with nano-diamond powder, corrosion resistance, wear resistance and hardness increased.

Synthesis of Aluminum Nitride Nanopowders by Carbothermal Reduction of Aluminum Oxide and Subsequent In-situ Nitridization (산화알루미늄 분말의 탄소열환원 및 직접 질화반응을 통한 질화알루미늄 나노분말의 합성)

  • Seo, Kyung-Won;Lee, Seong-Yong;Park, Jong-Ku;Kim, Sung-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.432-438
    • /
    • 2006
  • Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Formation of an Aluminum Hydroxide Fiber by a Hydrolysis of Aluminum Nano Powder (알루미늄 나노 분말의 수화반응에 의한 수산화알루미늄 형성)

  • Lee Geunhee;Oh Young Hwa;Rhee Chang Kyu;Kim Whung Whoe
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Formation of aluminum hydroxide by a hydrolytic reaction of nano aluminum powder synthesized by a pulsed wire evaporation (PWE) method has been studied. The type and morphology of the hydroxides were investigated with various initial temperatures and pHs. The nano fibrous boehmite (AlOOH) was formed predominantly over $40^{\circ}C$ of the hydrolytic temperature in acid solution, while the bayerite $(Al(OH)_3)$ was formed predominantly below $30^{\circ}C$ in alkali solution with a faceted crystalline structure. As a result the boehmite showed a much larger specific surface area (SSA) than that of bayerite. The highest SSA of the boehmite was about $409\;m^2/g$.

Analysis of Aluminum Powder Densification by Continuous Front Extrusion-Equal Channel Angular Pressing (등통로각압축이 결합된 압출 공정에 의한 알루미늄 분말의 치밀화 거동)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at $200^{\circ}C$. Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.

Synthesis of Aluminum Hydroxide Nanofiber by Electrolysis of Aluminum Plates (전기분해법에 의한 수산화알루미늄 나노화이버 제조)

  • Woo S.H.;Lee M.K.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.108-111
    • /
    • 2006
  • Aluminum hydroxides were synthesized by a simple electrolytic reaction of aluminum plates. The aluminum hydroxide, boehmite (AlO(OH)), was predominantly formed in the application of electrical potential at and above 30V, while the mixture of bayerite ($Al(OH)_3$) and boehmite (AlO(OH)) phases were formed below 20V. The boehmite has a clear fibrous structure controlled on nanometer scale. On the contrary, the bayerite consists of the typical hourglass or semi-hourglass shaped coarse crystals as a result of aggregation of various crystals stacked together. The specific surface area of the boehmite nanofiber was markedly high, approaching at about $302\;m^2/g$.

Regulation of the Dispersed Composition of Aluminum Oxide Nanopowders Produced by Electrical Explosion

  • Kwon, Young-Soon;B. Nazarenko, Olga;P. Ilyin, Alexander
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.161-163
    • /
    • 2003
  • The feasibility of obtaining highly dispersed aluminum oxide powders by the electrical explosion of aluminum conductors in an inert gas atmosphere and the subsequent oxidation of aluminum particles by water prior to their contact with air is demonstrated. For a specific surface area of the initial aluminum powder of 6.5$m^2$/g, the corresponding specific surface area of the resultant aluminum oxide nanopowder was as large as 300$m^2$/g.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.