• 제목/요약/키워드: Nano accuracy

검색결과 219건 처리시간 0.024초

배선을 최소화한 XOR 게이트 기반의 QCA 반가산기 설계 (Design Of Minimized Wiring XOR gate based QCA Half Adder)

  • 남지현;전준철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권10호
    • /
    • pp.895-903
    • /
    • 2017
  • 양자점 셀룰라 오토마타(QCA)는 CMOS의 근본적인 한계에 대한 대체 해결책으로 제안된 기술 중 하나이다. QCA는 최근 실험 결과와 함께 다양한 연구가 진행해오고 있으며 나노 규모의 크기와 낮은 전력 소비로 각광 받고 있다. 기존 논문에서 제안된 XOR 게이트는 최소한의 면적과 셀의 개수를 이용하여 설계 할 수 있음에도 불구하고 안정성 및 결과의 정확성 때문에 추가된 셀의 개수가 많았다. 본 논문에서는 기존의 XOR 게이트의 단점을 보완한 게이트를 제안한다. 본 논문의 XOR 게이트는 정사각형 구조로 AND 게이트와 OR게이트를 배치함으로써 셀 배선의 개수를 줄인다. 그리고 제안한 XOR 게이트를 이용하여 단순 인버터 역할을 하는 셀 2개를 추가해 반가산기를 제안한다. 또한 본 논문은 입력과 결과의 정확성을 위해 QCADesginer을 이용한다. 따라서 제안한 반가산기는 기존의 반가산기에 비해 더 적은 수의 셀, 전체 면적으로 구성됨으로 큰 회로에 사용할 때 혹은 작은 면적에 반가산기가 필요할 때 효율적이다.

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

자기 흡인식 부상 원리에 기초한 비접촉식 서피스 액추에이터의 초정밀 범용 스테이지에의 적용 가능성 (Feasibility Study of General-purpose Precision Stage Using A Novel Contact-Free Surface Actuator Based on Magnetic Suspension Technology)

  • 정광식;이상헌;백윤수
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.452-460
    • /
    • 2002
  • The precision stage using a novel contact-free planar actuator based on magnetic farces, magnetized force and Lorentz farce, is suggested. In the promising magnetic structure, the mover is driven directly without any transmission mechanism, and doesn't need any auxiliary driver for its posture calibration. Then it is estimated that the proposed operating principle is very suitable for work requiring high accuracy and cleanness, or general-purpose nano-stage. In this paper, we discuss a driving principle of the planar system including the magnetic force generation mechanism, a framework for the force model, governing characteristics of the levitated plate, and a planar motion control of the constructed prototype. And experimental results are given to verify the derived theoretical model and a feasibility of the system.

집속이온빔을 이용한 미세구조물 가공의 형상정밀도 향상 (A New Approach to Reduce Geometric Error in FIB Fabrication of Micro Structures)

  • 김경석;정재원;민병권;이상조;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1186-1189
    • /
    • 2005
  • Focused Ion Beam machining is an attractive approach to produce nano-scale 3D structures. However, like other beam-based manufacturing processes, the redeposition of the sputtered material during the machining deteriorates the geometric accuracy of ion beam machining. In this research a new approach to reduce the geometric error in FIB machining is introduced. The observed redeposition phenomena have been compared with existing theoretical model. Although the redeposition effect has good repeatability the prediction of exact amount of geometric error in ion beam machining is difficult. Therefore, proposed method utilizes process control approach. Developed algorithm measures the redeposition amount after every production cycle and modifies next process plan. The method has been implemented to a real FIB machine and the experimental results demonstrated considerable improvement of five micrometer-sized pocket machining.

  • PDF

압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계 (Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation)

  • 문준희;이봉구
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

0.4nm 해상도의 엔코더 타입 전기용량형 변위센서 (An 0.4nm Resolution Encoder-like Capacitive Displacement Sensor)

  • 강대실;김무진;문원규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1450-1454
    • /
    • 2007
  • A Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) has been developed to measure displacements at high accuracy within a long measurement range. In this paper, we have worked on improving the performance and reliability of the sensor. The performance increase can be done by introducing the smaller electrode patterns of $4{\mu}m$ width. In order to improve the reliability of the sensor we have changed the electrode layers from chrome-gold to chrome-gold-chrome and re-design its supporting structure. The newly-designed sensor is fabricated and tested to show that its sensitivity is $35pF/{\mu}m$, which implies that its resolution may be 0.36nm if SNR (Signal-to-Noise-Ratio) is 80.1dB. It is about ten times of that $(3.14pF/{\mu}m)$ of its previous version with 10${\mu}m$ electrodes. The total measurement range remains the same as the previous one; 15mm. The calibration experiments show its improved performance and reliability.

  • PDF

등통로각압축 공정용 저하중 분리형 금형 설계 (Split Die Design for ECAP with Lower Loads)

  • 진영관;강성훈;손일헌;임용택
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.217-222
    • /
    • 2008
  • Equal channel angular pressing (ECAP) is one of the effective methods to produce bulk-nano materials by accumulating plastic strain into the workpiece without changing its cross-sectional shape in the multi-pass processing. However, the forming load becomes higher for manufacturing large specimens using conventional solid or split dies because of friction, flash formation, and usage of dummy specimen. In the present investigation, better split die was designed to reduce the forming loads and improve the geometrical accuracy of the specimen in the multi-pass ECAP. The new die exit channel was also designed to reduce the friction effect. Experiments with AA1050 specimens with a square cross-section were carried out to examine the design goal using the proposed split dies for routes A and C up to four passes. The numerical forming simulations were used to determine the effective geometry of various die models in the present work.

콜드체인 시스템의 센서태그 운영 최적화를 위한 DEVS 기반 시뮬레이션 모델 (DEVS-Based Simulation Model for Optimization of Sensor-Tag Operations in Cold Chain Systems)

  • 류옥현;강용신;진희주;이용한
    • 대한산업공학회지
    • /
    • 제41권2호
    • /
    • pp.173-184
    • /
    • 2015
  • The application of radio frequency identification (RFID) sensor-tags in cold chain systems has recently received a great deal of attention. To design cold chain systems with RFID sensor-tags that minimize the initial investment and operational cost while fulfilling the functional and operational requirements, simulation study is one of the preferable and effective approaches. To simulate the possible design configurations, the individual components in a cold chain system can be extracted and implemented as a DEVS (Discrete Event System Specification) model. Based on the proposed DEVS model, a new cold chain simulation model can be efficiently created by simply connecting each DEVS model around the RFID sensor-tag of interest in sequence according to the structure of the cold chain system, and then executed (or simulated) on Java programming environments by the DEVSJAVA simulator. As a result of simulation, some key performance indexes such as reliability, accuracy or timeliness can be calculated and used to choose better components or to compare different system configurations of cold chain systems.

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

DEVELOPMENT OF ULTRA-LIGHT 2-AXES SUN SENSOR FOR SMALL SATELLITE

  • Kim, Su-Jeoung;Kim, Sun-Ok;Moon, Byoung-Young;Chang, Young-Keun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권1호
    • /
    • pp.47-58
    • /
    • 2005
  • This paper addresses development of the ultra-light analog sun sensors for small satellite applications. The sun sensor is suitable for attitude determination for small satellite because of its small, light, low-cost, and low power consumption characteristics. The sun sensor is designed, manufactured and characteristic-tested with the target requirements of ${\pm}60^{\circ}$ FOV (Field of View) and pointing accuracy of ${\pm}2^{\circ}$. Since the sun sensor has nonlinear characteristics between output measurement voltage and incident angle of sunlight, a higher order calibration equation is required for error correction. The error was calculated by using a polynomial calibration equation that was computed by the least square method obtained from the measured voltages vs. angles characteristics. Finally, the accuracies of 1-axis and 2-axes sun sensors, which consist of 2 detectors, are compared.