• Title/Summary/Keyword: Nano Science

Search Result 4,180, Processing Time 0.032 seconds

Microstructure of TiO2 sensor electrode on nano block copolymertemplates using an ALD (나노 블록공중합체 템플레이트에 ALD로 제조된 센서용 TiO2 박막의 미세구조 연구)

  • Park, Jong-Sung;Han, Jeung-Jo;Song, Oh-Sung;Jeon, Seung-Min;Kim, Hyeong-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2009
  • We fabricated nano-templates by low temperature BCP(block copolymer) process at 180 $^{\circ}C$, then we deposited 10 nm-thick $TiO_2$ layers with ALD(atomic layer deposition) at low temperature of 150 $^{\circ}C$. Through FE-SEM analysis, we confirmed the successful formation of the groove-type(width of crest : 30 nm, width of trough : 18 nm) and the cylinder-type(diameter : 10 nm, distance between hole : 25 nm) templates. Moreover, after $TiO_2$-ALD processing, we confirmed the deposition of the uniform nano layers of $TiO_2$ on the nano-templates. Through AFM analysis, the pitches of the crest-through(in groove-type) and hole-hole(in cylinder-type) were the same before and after $TiO_2$-ALD processing. In addition, we indirectly determined the existence of the uniform $TiO_2$ layers on nano-templates as the surface roughness decreased drastically. We successfully fabricated nano-template at low temperature and confirmed that the three-dimensional nano-structure for sensor application could be achieved by $TiO_2$-ALD processing at extremely low temperature of 150 $^{\circ}C$.

Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor (입상의 이산화티타늄 박막을 이용한 수소센서)

  • Song, Hye-Jin;Oh, Dong-Hoon;Jung, Jin-Yeun;Nguyen, Duc Hoa;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.325-329
    • /
    • 2009
  • Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

MEMS for Heterogeneous Integration of Devices and Functionality

  • Fujita, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Future MEMS systems will be composed of larger varieties of devices with very different functionality such as electronics, mechanics, optics and bio-chemistry. Integration technology of heterogeneous devices must be developed. This article first deals with the current development trend of new fabrication technologies; those include self-assembling of parts over a large area, wafer-scale encapsulation by wafer-bonding, nano imprinting, and roll-to-roll printing. In the latter half of the article, the concept towards the heterogeneous integration of devices and functionality into micro/nano systems is described. The key idea is to combine the conventional top-down technologies and the novel bottom-up technologies for building nano systems. A simple example is the carbon nano tube interconnection that is grown in the via-hole of a VLSI chip. In the laboratory level, the position-specific self-assembly of nano parts on a DNA template was demonstrated through hybridization of probe DNA segments attached to the parts. Also, bio molecular motors were incorporated in a micro fluidic system and utilized as a nano actuator for transporting objects in the channel.

Direct Deposition of high quality nanocrystalline Silicon Films by Catalytic CVD at Low Temperatures (<200 K)

  • Kim, Tae-Hwan;Lee, Kyoung-Min;Hwang, Jae-Dam;Hong, Wan-Shick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.261-263
    • /
    • 2008
  • We attempted modulation of the hydrogen dilution ratio in a Cat-CVD system to achieve both the minimal incubation layer and the high throughput. We obtained the incubation layer thickness of 3 nm, and were able to grow a 200 nm-thick film having a 70 % crystallinity in 18 minutes.

  • PDF

Biosensors: a review (바이오센서)

  • Hwang, Kyo-Seon;Kim, Sang-Kyung;Kim, Tae-Song
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.251-262
    • /
    • 2009
  • Biosensors exploit the specific binding between recognition molecule on the biosensor surface and target molecule in analyte and are used in the detection of specific biomolecules such as protein, DNA, cell, virus, etc., with a view towards developing analytical devices. Recently, application field of biosensors have been expanding from diagnosis to biodefense because they can basically serve as high performance devices. This review describes the basic information of biosensors including definition, classification, and operational principle. Moreover, we introduce micro/nano technology-based biosensors with better detection performance than traditional method and their application examples.

The Study of Nanocrystalline Silicon Bottom-gate Thin Film Transistor Fabricated at Low Temperature for Flexible Display

  • Lee, Youn-Jin;Lee, Kyoung-Min;Hwang, Jae-Dam;No, Kil-Sun;Yoon, Kap-Soo;Yang, Sung-Hoon;Hong, Wan-Shick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.557-559
    • /
    • 2009
  • We attempted modulation of hydrogen dilution ratio to achieve both the minimal incubation layer and high deposition rate. The incubation layer thickness was estimated by transmission electron microscopy (TEM) and crystallization fraction was measured by Raman spectroscopy.

  • PDF

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method

  • Cho, Youngji;Yang, Jun-Mo;Lam, Do Van;Lee, Seung-Mo;Kim, Jae-Hyun;Han, Kwan-Young;Chang, Jiho
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.133-137
    • /
    • 2014
  • We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.

Synthesis and Dispersion Stabilization of Indium Tin Oxide Nanopowders by Coprecipitation and Sol-Gel Method for Transparent and Conductive Films

  • Cho, Young-Sang;Hong, Jeong-Jin;Kim, Young Kuk;Chung, Kook Chae;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.831-841
    • /
    • 2010
  • Indium tin oxide (ITO) nanopowders were synthesized by coprecipitation and the sol-gel method to prepare a stable dispersion of ITO nano-colloid for antistatic coating of a display panel. The colloidal dispersions were prepared by attrition process with a vibratory milling apparatus using a suitable dispersant in organic solvent. The ITO coating solution was spin-coated on a glass panel followed by the deposition of partially hydrolyzed alkyl silicate as an over-coat layer. The double-layered coating films were characterized by measuring the sheet resistance and reflectance spectrum for antistatic and antireflective properties.

New 7-Hydroxycoumarin-Based Fluorescent Chemosensors for Zn(II) and Cd(II)

  • Swamy, K.M.K.;Kim, Min-Jung;Jeon, Hye-Ryeong;Jung, Ji-Young;Yoon, Ju-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3611-3616
    • /
    • 2010
  • Five new 4- or 8-substituted-7-hydroxycoumarin derivatives (1-5) were synthesized as fluorescent sensors for metal ions. Fluorescent changes and selectivity for metal ions were compared based on the introduction of different ligands and/or testing with different substitution positions of 7-hydroxycoumarin in aqueous solution. Especially, probes 2, 3 and 5 displayed large fluorescence enhancements with $Zn^{2+}$ and $Cd^{2+}$. Probes 2 and 3 showed moderate selectivity for $Zn^{2+}$ over $Cd^{2+}$. On the other hand, probe 4 showed large fluorescence quenching effects upon the addition of $Ag^+$ and $Hg^{2+}$.

Nano-Scale Observation of Nanomaterials by In-Situ TEM and Ultrathin SiN Membrane Platform

  • An, Chi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.657-657
    • /
    • 2013
  • In-situ observations of nano-scale behavior of nanomaterials are very important to understand onthe nano-scale phenomena associated with phase change, atomic movement, electrical or optical properties, and even reactions which take place in gas or liquid phases. We have developed on the in-situ experimental technologies of nano-materials (nano-cluster, nanowire, carbon nanotube, and graphene, et al.) and their interactions (percolation of metal nanoclusters, inter-diffusion, metal contacts and phase changes in nanowire devices, formation of solid nano-pores, melting behavior of isolated nano-metal in a nano-cup, et al.) by nano-discovery membrane platform [1-4]. Between two microelectrodes on a silicon nitride membrane platform, electrical percolations of metal nano-clusters are observed with nano-structures of deposited clusters. Their in-situ monitoring can make percolation devices of different conductance, nanoclusters based memory devices, and surface plasmonic enhancement devices, et al. As basic evidence on the phase change memory, phase change behaviors of nanowire devices are observed at a nano-scale.

  • PDF