• Title/Summary/Keyword: Nano Metal Powder

Search Result 151, Processing Time 0.026 seconds

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF

A Study on Electromagnetic Interference Shielding Effectiveness of the Metal Powders and Nano Carbon black /Fiber Reinforced Epoxy composites (메탈 파우더와 나노 카본 블랙/섬유강화 복합재료의 전자파 차폐효과에 관한 연구)

  • Han Gil-Young;Kim Jin-Seok;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.100-107
    • /
    • 2006
  • The objective of this research is to investigate the electromagnetic interference(EMI) shielding characteristics of fiber reinforced composites. We fabricated glass and carbon fiber reinforced composites filled with metal powder and nano carbon black. The measurements of shielding effectiveness(SE) were carried out frequency range 300MHz - 1GHz for commercial purposes such as electric or telecommunication devices. The return loss and loss due to absorption were also measured as a function of frequency in the micro wave(300MHz-1GHz) region. It is observed that the SE of the composites is the frequency dependent, increase with the increases in filler loading. The Mg metal powder filled composite showed higher SE compared to that of carbon black. The Mg metal powder/epoxy composite was shown to exhibit up to 40dB of SE. The results indicates that the composite having higher filler loading can be used for the purpose of EMI shielding as well as for some microwave applications.

Synthesis and Properties of Fe-Ni Nano-sized Powders using Metal Nitrates (금속질산염을 이용한 Fe-Ni 나노분말의 제조 및 특성)

  • Joo, Min-Hee;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2009
  • The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate have been investigated. $Fe_2O_3$/NiO composite powders were prepared by chemical solution mixing of Fe- and Ni-nitrate and calcination at $350^{\circ}C$ for 2 h. The calcined powders were hydrogen-reduced at $350^{\circ}C$ for 30 min. The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate were analyzed by TG in air and hydrogen atmosphere, respectively. TG and XRD analysis for hydrogen-reduced powders revealed that the $Fe_2O_3$/NiO phase transformed to $FeNi_3$ phase at the temperature of $350^{\circ}$. The activation energy for the hydrogen reduction, evaluated by Kissinger method, was measured as 83.0 kJ/mol.

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Fabrication of Nanocomposite Powders by Sonochemical Method

  • Hayashi, Yamato;Sekino, Tohru;Niihara, Koichi
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.207-209
    • /
    • 2001
  • Nano particles have recently been a major research interest, motivated by their unusual physical and chemical properties. Such particles can be synthesized using physical and chemical methods. The physical methods need expensive installation like vacuum induction furnace, whereas in chemical methods the process in generally very simple and low cost. In this study, simple and new fabrication process by using ultrasound was investigated to prepare the nano-sized metal particles on various powders at room temperature.

  • PDF

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF