• 제목/요약/키워드: Nano Machining

검색결과 189건 처리시간 0.024초

초정밀 엔드밀링 가공조건 최적화를 통한 금속상의 3차원 이미지 구현 (Realization of 3D Image on Metal Plate by Optimizing Machining Conditions of Ultra-Precision End-Milling)

  • 이재령;문승환;제태진;정준호;김휘;전은채
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.885-891
    • /
    • 2016
  • 3D images are generally manufactured by complex production processes. We suggested a simple method to make 3D images based on a mechanical machining technology in this study. We designed a tetrahedron consisted of many arcs having the depth of $100{\mu}m$ and the pitch of $500{\mu}m$, and machined them on an aluminum plate using end-milling under several conditions of feed-rate and depth of cut. The area of undeformed chip including depth of cut and feed-rate can predict quality of the machined arcs more precisely than the undeformed chip thickness including only feed rate. Moreover, a diamond tool can improve the quality than a CBN tool when many arcs are machined. Based on the analysis, the designed tetrahedron having many arcs was machined with no burr, and it showed different images when observed from the left and right directions. Therefore, it is verified that a 3D image can be designed and manufactured on a metal plate by end-milling under optimized machining conditions.

음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화 (Optimization of Nano-machining parameters using Acoustic Emission and Taguchi Method)

  • 손정무;이성환;최장은
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.50-55
    • /
    • 2003
  • Atomic force microscope(AFM) techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to microscale. AFM with suitable tips is being used for nanofabrication nanomachining purposes. In this paper, machining characteristics of silicon have been investigated by nano indentation and nano scratch. Mechanisms of material removal on the microscale are studied and the Taguchi method is introduced to acquire optimum parameters for nanomachining. This work shows effectiveness of the Taguchi method in nanomachining. Also, Acoustic Emission(AE) is introduced for the monitoring of nanomachining.

  • PDF

FTS시스템을 이용한 룰외 미세 패턴 가공 (Micro Patterning of Roll using Fast Tool Servo System)

  • 여굉;최수창;이상민;박천홍;이득우
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.22-26
    • /
    • 2011
  • The application of fast tool servo (FTS) for diamond turning has been investigated extensively. This paper focuses on the fabrication of the sinusoidal microstructure on a roller, which generated by a piezoelectric-assisted FTS. The influence of the machining parameters on the microstructure configuration was investigated. The experiment results point out that the configuration of the machined microstructure depends mainly on the spindle speed, the diameter of roller and the driving frequency of FTS. The calculation method of the microstructure dimension was reported. The turning test results show that the diamond tool can be moved up to 1kHz without any reinjected vibration in the machining and the peak-to-valley amplitude of the machined sinusoidal microstructure is about 12<${\mu}m$

나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구 (Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material)

  • 신보성;이정한
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • 제11권3호
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

집속이온빔에 의한 미세가공 특성 (Micro-machining Characteristics using Focused Ion Beam)

  • 이종항;박철우;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.636-639
    • /
    • 2003
  • It is difficult to machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. In addition, 3 dimensional structures can be made by a combination of FIB and CVD to the level of 10 nanometers. Die & moulds techniques are better than one-to-one machining techniques in the mass production of ultra size structures, in regards to production costs. In this case, the machining precision of die & moulds affects produced parts. Also, it is advantageous to machine die & moulds to the 10 micrometer level by FIB technique rather than other techniques. In this paper, the grooving characteristics for die & mould materials by FIB were carried out experimentally in order to compare the machining characteristics of FIB with conventional machining methods. The results showed that the machining parameters and the scanning path of FIB affects the precision. The machined width and depth of the groove varied depending on the required depth due to the redeposition of the sputtered ion material accumulating on both the bottom and the side of the wall.

  • PDF

초정밀 진동 보조 가공 연구 동향 (Current Trends of Vibration-Assisted Machining in Micro/Nano Scales)

  • 이문구;전용호
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.834-839
    • /
    • 2012
  • Recently, mechanical components with miniaturized size, complex shape and fine surface are on demand from industries such as mobile electronics, medical devices and defense. The size of them is smaller than several millimeters, the shape has micro-holes, curve, or multi-step and the surface is mirror-like. This features are not able to be machined with the conventional machining, therefore electro-discharge machining (EDM), cutting, and laser machining have been applied. If the technologies are assisted by vibration, high aspect ratio and good surface are to be achieved. In this paper, prior and current researches of vibration-assisted machining are reviewed. Machining mechanisms with vibration-assisting are explained, their effects are shown, and vibrating apparatuses are discussed. Especially, comparison between with and without vibration assisting is presented. This review shows the vibration-assisted machining is effectively fabricate the components with small and complicated shape and fine surface finish.

나노스케일 워터젯 가공에 대한 분자시뮬레이션 연구 (Molecular Simulation of Nano-Scale Waterjet Machining)

  • 이상훈;김현준;김태욱
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.216-219
    • /
    • 2023
  • This study employs molecular dynamics simulations to investigate the material behavior of workpieces in waterjet machining processes. To gain fundamental insights into waterjet machining, simulations were conducted using pure water, excluding abrasive particles. The simulation model comprised thousands of water molecules interacting with a single crystal metal workpiece. Water molecule clusters were imparted with various velocities to initiate collisions with the metal workpiece. The material behavior of the metal surface was analyzed with respect to the applied velocity conditions, considering the intricate interplay between water molecules and the workpiece at the atomic scale. The results demonstrated that the machining of the metal workpiece occurred only when water molecules were endowed with velocities above a certain threshold. In cases where energy was insufficient, the metal workpiece exhibited a slight increase in surface roughness due to mild plastic deformation, without undergoing substantial material removal. When machining occurred, the ejection of material revealed a 3-fold symmetric pattern, confirming that material removal in waterjet machining of the metal workpiece is primarily driven by plastic deformation-induced material ejection. This research provides crucial insights into the mechanisms underlying waterjet machining and enhances our understanding of material behavior during the process. The findings can be valuable in optimizing waterjet machining techniques.

특수가공법 의사결정 진단 전문가 시스템 개발 (Development of Expert System for the Diagnostic of NTM Decision-Making)

  • 윤문철;조현덕
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.94-100
    • /
    • 2010
  • Nowadays, several nontraditional machining(NTM) processes are widely used to machine a complex and accurate shape part of hard materials, such as titanium, ceramics, high strength temperature resistant and refractory materials which are difficult to machine and having high strength, hardness, toughness. Machining of these complex shapes in such materials by traditional machining processes are very difficult. The NTM processes is important in the areas of micro- and nano scale machining, where high accuracy and superior surface characteristics are required, which can only be achieved using these NTM processes. So, for effective selection of different NTM processes, careful decision making for a given NTM application is often necessary. An appropriate NTM process for a given material and shape condition is very difficult for the novice engineers. In this paper, an expert system based on an analytic network process(ANP) is suggested for a best selection of NTM process in a NTM application considering an prior interdependency effect among various factors.