• Title/Summary/Keyword: Nano Carbon tube

Search Result 168, Processing Time 0.028 seconds

A Study on the Measurement of Young's Modulus of Carbon Nano Tube (탄소 나노 튜브의 영 계수 측정에 관한 연구)

  • 이준석;최재성;강경수;곽윤근;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.682-685
    • /
    • 2003
  • In this paper, we propose the method to measure the Young's modulus of carbon nano tube which was manufactured by chemical vapor deposition. We also made the tungsten tip by electrochemical etching process and the carbon nano tube which was detangled through ultra-sonication with isopropyl alcohol was attached to the tungsten tip. This tip which was composed of tungsten tip and carbon nano tube can be used in Young's modulus measurement by applying DC voltage with counter electrode. The attachment process and measurement of the deflection of carbon nano tube was done under optical microscope.

  • PDF

A Study on the Control of the Length of Carbon-Nano-Tube Probe (탄소나노튜브 프로브의 길이 제어에 관한 연구)

  • Lee, Jun-Sok;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1888-1891
    • /
    • 2003
  • In this paper, we proposed a new method to control the length of carbon nano tube in the single CNT probe. A single CNT probe was composed of a tungsten tip made by the electrochemical etching and carbon nano tube which was grown by CVD and prepared through the sonication. The two components were attached with the carbon tape. Since the length of CNT can not be controlled during the manufacturing, the post process is needed to shorten the CNT. In this paper, we proposed the method of electrochemical process. The process was done under the optical microscope and the results were checked by SEM. The diameter of the carbon nano tube used in this paper was about 130nm because the above process had to be done with the optical microscope. Using the method proposed in this paper, we can control the length of the nano tube tip.

  • PDF

Fluid flow simulation in carbon nano tube using molecular dynamics (탄소나노튜브 내 유체유동의 분자동역학 모사)

  • 우영석;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.347-354
    • /
    • 2003
  • The dynamics of fluid flow through nanomachines is completely different from that of continuum. In this study, molecular dynamics simulations were performed for the flow of helium, neon, argon inside carbon(graphite) nanotubes of several sizes. The fluid was introduced into the nanotube at a given initial velocity according to given temperature. Diffusion coefficients were evaluated by Green-Kubo equation derived from Einstein relationship. The behaviour of the fluid was strongly dependent on the density of fluid and tube diameter, not on the tube length. It was found that the diffusion Coefficients increased With decreasing the density of molecules and increasing the diameter and temperature.

  • PDF

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Electrochemical Immobilization of Osmium Complex onto the Carbon Nano-Tube Electrodes and its Application for Glucose sensor (전기화학적인 방법을 이용한 탄소나노튜브 전극상의 오스뮴 착물의 고정화 및 혈당센서에 관한 응용)

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • The multi-wall carbon nano-tube composite mixed with carbon paste electrode presented more sensitive and selective amperometric signals in the oxidation of glucose than general screen-printed carbon electrodes(SPCEs). Redox mediators to transport electrodes from enzyme to electrodes are very important part in the biosensor. A novel osmium redox complex was synthesized by the coordinating pyridine group containing primary amines which were electrochemically immobilized onto the MWCNT-SPCEs surface. Electrochemical studies of osmium complexes were investigated by cyclic voltammetry, chronoamperometry. The surface coverage of osmium complexes on the modified carbon nano-tube electrodes were significantly increased at 100 time (${\tau}_0=2.0\;{\times}\;10^{-9}\;mole/cm^2$) compared to that of the unmodified carbon electrodes. It's practical application of the glucose biosensor demonstrated that it shows good linear response to the glucose concentration in the range of 0-10 mM.

Clinical In Vivo Bio Assay of Glucose in Human Skin by a Tattoo Film Carbon Nano Tube Sensor

  • Ly, Suw Young;Lee, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.595-601
    • /
    • 2017
  • In vivo assay of glucose detection was described using a skin tattoo film electrode (STF), and the probe was made from carbon nano tube paste modification film paper. Here in the square-wave stripping anodic working range obtained of $20-100mgL^{-1}$ within an accumulation time of 0 seconds only in sea water electrolyte solutions of pH 7.0. The relative standard deviations of 50 mg glucose that were observed of 0.14 % (n=12), respectively, using optimum stripping accumulation of 30 sec, the low detection limit (S/N) was pegged at 15.8 mg/L. The developed results can be applied to the detect of in vivo skin sensing in real time. Which confirms the results are usable for in vitro or vivo diagnostic clinical analysis.

Trend of Carbon Nano Tube and Application

  • Ryu, Kyung-Han;Soh, Dea-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.211-212
    • /
    • 2005
  • Semiconductor fabrication technique has been increasingly developed virtue of greater demands, and supplies and applied semiconductor components in respective processes under development for minuteness. Now semiconductor having a line-width of 75nm was commercialized, and it is possible to scale down to 25nm. Accordingly, to cover with limitations, alternatives are actively investigated. In this paper, we overview the trend and applications of carbon nano tube (CNT) and present the future and technology based on existed theories.

  • PDF

The research regarding the energy storage device which applies the carbon nanotube (탄소나노튜브를 활용한 에너지 저장 소자에 관한 연구)

  • Kim, Do-Hwan;Kang, Soon-Duk
    • The Journal of Information Technology
    • /
    • v.10 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The multiple-ability which the structure and the physical properties which the carbon or scull tube are unique show the applicability is superior in the plane indication element which is an indispensability of information communications apparatus, the stubbornness memory element, 2nd change of air and the rough copy dosage [khay] plaque seater, the hydrogen store material and the chemical sensor back and it has the possibility which will pass over the limit which the element of existing has. from the present paper it compared in the steel and only 10 the boat it did and it analyzed against an energy storage space voluntary application and developmental apply the carbon or scull tube trend in order about under researching the effective energy storage element it could be appeared, the technique of the strong carbon nano tube. 1. The hazard which embodies the energy storage element which uses the carbon or scull tube it follows in the function which stands and CNT of the structure which is various is necessary. 2. CNT fabrications of each one must precede possible not only must be each Cabinet conference circumstances quality gain and loss. 3. The structural control of syntheses, length controls, diameter controls and the metal - CNT junction control backs of quality CNT must precede. Applies the hereafter carbon or the scull tube in the various element with the primary preceding base technique for the structural plan technique of the carbon or scull tube to be certainly established, it does, secondarily the various element functional control technique which uses the carbon or scull tube is researched and will do.

  • PDF

Electrochemical Investigation of Acetaminophen with a Carbon Nano-tube Composite Film Electrode

  • Li, Chunya;Zhan, Guoqing;Yang, Qingdan;Lu, Jianjie
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1854-1860
    • /
    • 2006
  • Electrochemical behaviors of acetaminophen at a muti-wall carbon nano-tube composite film modified glassy carbon electrode were investigated by cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Compared with that obtained at the unmodified electrode, the peak currents were enhanced significantly, and the oxidation peak shifted towards more negative potential with the reduction peak shifted positively. The peak-to-peak separation turned narrow, and suggested that the reversibility was improved greatly. Experimental parameters, such as scan rate, pH and accumulation conditions were optimized. It was found that a maximum current response can be obtained at pH = 5.0 after accumulation at -0.50 V for 80 s. The oxidation peak current was found to be linearly related to acetaminophen concentration over the range of $5.0{\times}10^{-7}\;\sim\;1.0{\times}10^{-4}$ mol $L^{-1}$ with a detection limit of $5.0{\times}10^{-8} $mol $L^{-1}$. A convenient and sensitive electrochemical method was developed for the determination of acetaminophen in a commercial paracetamol oral solution. Its practical application demonstrated that it has good selectivity and high sensitivity.