• Title/Summary/Keyword: Nand Flash

Search Result 350, Processing Time 0.02 seconds

Low Cost Endurance Test-pattern Generation for Multi-level Cell Flash Memory

  • Cha, Jaewon;Cho, Keewon;Yu, Seunggeon;Kang, Sungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.147-155
    • /
    • 2017
  • A new endurance test-pattern generation on NAND-flash memory is proposed to improve test cost. We mainly focus on the correlation between the data-pattern and the device error-rate during endurance testing. The novelty is the development of testing method using quasi-random pattern based on device architectures in order to increase the test efficiency during time-consuming endurance testing. It has been proven by the experiments using the commercial 32 nm NAND flash-memory. Using the proposed method, the error-rate increases up to 18.6% compared to that of the conventional method which uses pseudo-random pattern. Endurance testing time using the proposed quasi-random pattern is faster than that of using the conventional pseudo-random pattern since it is possible to reach the target error rate quickly using the proposed one. Accordingly, the proposed method provides more low-cost testing solutions compared to the previous pseudo-random testing patterns.

The Fabrication and Characteristics of p-channel SONOS Charge-Trap Flash Memory (p채널 SONOS 전하트랩 플래시메모리의 제작 및 특성)

  • Kim, Byung-Cheul;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.604-607
    • /
    • 2008
  • In this study, p-channel silicon-oxide-nitride-oxide-silicon (SONOS) transistors are fabricated and characterized as an unit cell for NAND flash memory. The SONOS transistors are fabricated by $0.13{\mu}m$ low power standard logic process technology. The thicknesses of gate insulators are $20{\AA}$ for the tunnel oxide, $14{\AA}$ for the nitride layer, and $49{\AA}$ for the blocking oxide. The fabricated SONGS transistors show low programming voltage, fast erase speed, and relatively good retention and endurance.

  • PDF

Power Optimization Method Using Peak Current Modeling for NAND Flash-based Storage Devices (낸드 플래시 기반 저장장치의 피크 전류 모델링을 이용한 전력 최적화 기법 연구)

  • Won, Samkyu;Chung, Eui-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • NAND flash based storage devices adopts multi-channel and multi-way architecture to improve performance using parallel operation of multiple NAND devices. However, multiple NAND devices consume higher current and peak power overlap problem influences on the system stability and data reliability. In this paper, current waveform is measured for erase, program and read operations, peak current and model is defined by profiling method, and estimated probability of peak current overlap among NAND devices. Also, system level TLM simulator is developed to analyze peak overlap phenomenon depending on various simulation scenario. In order to remove peak overlapping, token-ring based simple power management method is applied in the simulation experiments. The optimal peak overlap ratio is proposed to minimize performance degradation based on relationship between peak current overlapping and system performance.

Development of Device Driver for Image Capture and Storage by Using VGA Camera Module Based on Windows CE (WINDOWS CE 기반 VGA 카메라 모듈의 영상 획득과 저장을 위한 디바이스 드라이버 개발)

  • Kim, Seung-Hwan;Ham, Woon-Chul;Lee, Jung-Hwan;Lee, Ju-Yun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.27-34
    • /
    • 2007
  • In this paper device driver for camera capture in hand held mobile system is implemented based on microsoft windows CE operating system. We also study the storage device driver based on the FAT fie system by using NAND flash memory as a storage device. We use the MBA2440 PDA board for implementing the hardware for image capture by using CMOS camera module producted by PixelPlus company. This camera module has VGA $640{\times}480$ pixel resolution. We also make application program which can be cooperated with the device driver for testing its performance, for example image capture speed and quality of captured image. We check that the application can be cooperated well not only with the device driver for camera capture but also with the device driver for FAT file system designed especially for the NAND flash memory.

Garbage Collection Method using Proxy Block considering Index Data Structure based on Flash Memory (플래시 메모리 기반 인덱스 구조에서 대리블록 이용한 가비지 컬렉션 기법)

  • Kim, Seon Hwan;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.1-11
    • /
    • 2015
  • Recently, NAND flash memories are used for storage devices because of fast access speed and low-power. However, applications of FTL on low power computing devices lead to heavy workloads which result in a memory requirement and an implementation overhead. Consequently, studies of B+-Tree on embedded devices without the FTL have been proposed. The studies of B+-Tree are optimized for performance of inserting and updating records, considering to disadvantages of the NAND flash memory that it can not support in-place update. However, if a general garbage collection method is applied to the previous studies of B+-Tree, a performance of the B+-Tree is reduced, because it generates a rearrangement of the B+-Tree by changing of page positions on the NAND flash memory. Therefor, we propose a novel garbage collection method which can apply to the B+-Tree based on the NAND flash memory without the FTL. The proposed garbage collection method does not generate a rearrangement of the B+-Tree by using a block information table and a proxy block. We implemented the B+-Tree and ${\mu}$-Tree with the proposed garbage collection on physical devices with the NAND flash memory. In experiment results, the proposed garbage collection scheme compared to greedy algorithm garbage collection scheme increased the number of inserted keys by up to about 73% on B+-Tree and decreased elapsed time of garbage collection by up to about 39% on ${\mu}$-Tree.

Development of the Efficient Compressed Data Management System for Embedded DBMS (모바일 DBMS를 위한 효율적인 압축 데이터 관리 시스템의 개발)

  • Shin, Young-Jae;Hwang, Jin-Ho;Kim, Hak-Soo;Lee, Seung-Mi;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.589-598
    • /
    • 2008
  • Recently, Mobile Computing Devices are used generally. And Information which is processed by Mobile computing devices is increasing. Because information is digitalizing. So Mobile computing Devices demand an Embedded DBMS for efficient management of information. Moreover Mobile computing Devices demand an efficient storage management in NAND-type flash memory because the NAND-type flash memory is using generally in Mobile computing devices and the NAND-type flash memory is more expensive than the magnetic disks. So that in this paper, we present an efficient Compressed Data Management System for the embedded DBMS that is used in flash memory. This proposed system improve the space utilization and extend a lifetime of a flash memory because it decreases the size of data.

Study on Improving the Mechanical Stability of 3D NAND Flash Memory String During Electro-Thermal Annealing (3D NAND 플래시메모리 String에 전열어닐링 적용을 가정한 기계적 안정성 분석 및 개선에 관한 연구)

  • Kim, Yu-Jin;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Localized heat can be generated using electrically conductive word-lines built into a 3D NAND flash memory string. The heat anneals the gate dielectric layer and improves the endurance and retention characteristics of memory cells. However, even though the electro-thermal annealing can improve the memory operation, studies to investigate material failures resulting from electro-thermal stress have not been reported yet. In this context, this paper investigated how applying electro-thermal annealing of 3D NAND affected mechanical stability. Hot-spots, which are expected to be mechanically damaged during the electro-thermal annealing, can be determined based on understanding material characteristics such as thermal expansion, thermal conductivity, and electrical conductivity. Finally, several guidelines for improving mechanical stability are provided in terms of bias configuration as well as alternative materials.

Adaptive Mapping Information Management Scheme for High Performance Large Sale Flash Memory Storages (고성능 대용량 플래시 메모리 저장장치의 효과적인 매핑정보 캐싱을 위한 적응적 매핑정보 관리기법)

  • Lee, Yongju;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyeong;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.78-87
    • /
    • 2013
  • NAND flash memory has been widely used as a storage medium in mobile devices, PCs, and workstations due to its advantages such as low power consumption, high performance, and random accessability compared to a hard disk drive. However, NAND flash cannot support in-place update so that it is mandatory to erase the entire block before overwriting the corresponding page. In order to overcome this drawback, flash storages need a software support, named Flash Translation Layer. However, as the high performance mass NAND flash memory is getting widely used, the size of mapping tables is increasing more than the limited DRAM size. In this paper, we propose an adaptive mapping information caching algorithm based on page mapping to solve this DRAM space shortage problem. Our algorithm uses a mapping information caching scheme which minimize the flash memory access frequency based on the analysis of several workloads. The experimental results show that the proposed algorithm can increase the performance by up to 70% comparing with the previous mapping information caching algorithm.

Adaptive Design Techniques for High-speed Toggle 2.0 NAND Flash Interface Considering Dynamic Internal Voltage Fluctuations (고속 Toggle 2.0 낸드 플래시 인터페이스에서 동적 전압 변동성을 고려한 설계 방법)

  • Yi, Hyun Ju;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.251-258
    • /
    • 2012
  • Recently, NAND Flash memory structure is evolving from SDR (Single Data Rate) to high speed DDR(Double Data Rate) to fulfill the high performance requirement of SSD and SSS. Accordingly, the proper ways of transferring data that latches valid data stably and minimizing data skew between pins by using PHY(Physical layer) circuit techniques have became new issues. Also, rapid growth of speed in NAND flash increases the operating frequency and power consumption of NAND flash controller. Internal voltage variation margin of NAND flash controller will be narrowed through the smaller geometry and lower internal operating voltage below 1.5V. Therefore, the increase of power budge deviation limits the normal operation range of internal circuit. Affection of OCV(On Chip Variation) deteriorates the voltage variation problem and thus causes internal logic errors. In this case, it is too hard to debug, because it is not functional faults. In this paper, we propose new architecture that maintains the valid timing window in cost effective way under sudden power fluctuation cases. Simulation results show that the proposed technique minimizes the data skew by 379% with reduced area by 20% compared to using PHY circuits.

Study of Data Retention Characteristics with surrounding cell's state in a MLC NAND Flash Memory (멀티 레벨 낸드 플레쉬 메모리에서 주변 셀 상태에 따른 데이터 유지 특성에 대한 연구)

  • Choi, Deuk-Sung;Choi, Sung-Un;Park, Sung-Kye
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.239-245
    • /
    • 2013
  • The data retention characteristics depending on neighbor cell's threshold voltage (Vt) in a multilevel NAND flash memory is studied. It is found that a Vt shift (${\Delta}Vt$) of the noted cell during a thermal retention test is increased as the number of erase-state (lowest Vt state) cells surrounding the noted cell increases. It is because a charge loss from a floating gate is originated from not only intrinsic mechanism but also lateral electric field between the neighboring cells. From the electric field simulation, we can find that the electric field is increased and it results in the increased charge loss as the device is scaled down.