• Title/Summary/Keyword: Nakdong watershed

Search Result 207, Processing Time 0.022 seconds

Water Quality Prediction and Forecast of Pollution Source in Namgang Mid-watershed each Reduction Scenario (남강중권역 오염부하 전망 및 삭감 시나리오별 하류 수질예측)

  • Yu, Jae Jeong;Shin, Suk Ho;Yoon, Young Sam;Kang, Doo Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.543-552
    • /
    • 2012
  • Namgang mid-watershed is located in downstream of Nakdong river basin. There are many pollution sources arround this area and it's control is important to manage a water quality of Nakdong river. A target year of Namgang mid-watershed water environment management plan is 2013. To predict a water quality at downstream of Namgang, we have investigated and forecasted the pollutant source and it's loading. There are some plan to construction the sewage treatment plants to improve the water quality of Nam river. Those are considered on predicting water quality. As results, it is shown that the population is 343,326 and sewerage supply rate is 79.2% and the livestock is 1,662,000 in Namgang mid-watershed. It is estimated that the population is 333,980, the sewerage supply rate is 86.9% in 2013. The milk cow and cattle were estimated upward and the pigs were downward by 2013. The generated loading of BOD and TP is 75,957 kg/day and 4,311 kg/day, discharged loading is 18,481 kg/day and 988 kg/day respectively in 2006. It were predicted upward the discharged loading of BOD and TP by 4.08% and 6.3% respectively. The results of water quality prediction of Namgang4 site were 2.5 mg/L of BOD and 0.120 mg/L of TP in 2013. It is over the target water quality at that site in 2015 about 25.0% and 9.1% respectively. Consequently, there need another counterplan to reduce the pollutants in that mid-watershed.

Comparative Study on Evaluating Standard Flow in Partially Gauged and Ungauged Watershed (부분계측 및 미계측 유역에서 기준유량 산정 방법 비교 연구)

  • Kim, Gyeonghoon;Kim, Jeongmin;Jeong, Hyunki;Im, Taehyo;Kim, Seongmin;Kim, Yongseok;Seo, Mijin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.481-496
    • /
    • 2019
  • The Ministry of Environment has measured streamflow at eight-day intervals for the estimation of standard flow of the Total Maximum Daily Loads (TMDL) system. This study identified the availability of the partially measured the eight-day interval data for estimating standard flow and found the optimal extension techniques of standard flow. The study area was selected for the Nakbon-A watershed in the Nakdong River, and four streamflow record extension techniques of standard flow were considered: extension, percentile, drainagearea, and regional regression methods. The flow duration curve (FDC) using the eight-day interval streamflow data indicated very high Nash and Sutcliffe Efficiency (NSE) values above 90 % from FDC-II to FDC-VII compared to FDC-VIII, the standard FDC. This result demonstrates that FDC using daily data of three-six cumulative years could represent standard FDC fairly well. For the streamflow record extension techniques of standard flow, the percentile method was selected as the optimal alternative, showing the minimal difference from FDC-VIII. These results validate the availability of the eight-day interval streamflow data in the standard flow estimation and the application of extension techniques. It seems that these results could reduce the uncertainty of partially measured streamflow data for water quantity and quality management.

Applicability of Load Duration Curve to Nakdong River Wateished Management (낙동강 유역관리를 위한 부하량 유황곡선의 적용 가능성)

  • Han, Suhee;Shin, Hyun Suk;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.620-627
    • /
    • 2007
  • In this study a general analysis method for watersheds with the entire runoff conditions and corresponding water quality is proposed and its applicability based on the currently available information is investigated. Using the 8-day-interval data set of runoff and water quality observed by Nakdong River Environment Research Center, the flow duration curve and discharge-load relation curve for each unit watershed are established, then the load duration curve is finally constructed. This paper discusses how the load duration curve can be used in the assessment of TMDL. The entire Nakdong river watershed is also divided into prior managing areas of point sources or non-point sources in a way of general management. It is thought that LDC can be a great tool for visualizing overall probabilities of current water quality and thus for the TMDL management.

An Integrated Watershed Environmental Assessment and Classification of the Mid-Nakdong River Region (낙동강 중류 지역의 통합적 유역환경평가 및 유형화)

  • Jung, Sung-Gwan;Park, Kyung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.3
    • /
    • pp.137-151
    • /
    • 2004
  • Many of today's environmental problems are regional in scope and their effects overlap and interact. The purpose of this paper is to developed a simple method for an integrated assessment of environmental conditions across the Mid-Nakdong River Region, by combining data on land use, impervious cover, roads, streams, riparian areas, forest patches, population, pollutant loadings, soil erosion and topography. A cluster analysis was used to identify groups of sub-watersheds with similar environmental characteristics. The mean value for each group was used to find watershed that may be more vulnerable to future environmental degradation. Watersheds in cluster I and II had high amount of forest, but the amount of riparian vegetation was low. Watersheds in cluster III, which located in the middle Geumho River and the main course of Nakdong River, had a greater proportion of their agriculture, a greater proportion of agriculture on steep slopes, and less forest adjacent to streams. Watersheds in cluster IV and V were in the most urbanized areas of the region. The principal adverse impacts for watersheds in this group were high scores for urban area, impervious cover, pollutant loadings, population density, forest fragmentation, and low amounts of forest and riparian forest cover. Notwithstanding the exploratory nature of cluster analysis, it appears to be a useful tool for grouping watersheds with similar environmental characteristics.

Regional Characteristics of Nonpoint Source Pollutant Loads in the Upstream Watersheds of Nakdong River (낙동강 상류유역의 지역별 비점오염부하 특성)

  • Choe, Gyeong-Suk;Son, Seong-Ho
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.283-292
    • /
    • 2006
  • The characteristics of nonpoint source pollutant loads in upstream of Nakdong River were studied through analysis of pollutant loads of 10 sub-watersheds divided based on administrative district. The discharge and pollutant concentration of each sub-watershed were collected from Nakdong-River Water Research Institute and Daegu Regional Environmental office, respectively. Pollution items analysed in this study were BOD, T-N and T-P. The delivery loads of the nonpoint source pollutions of each sub-watershed were calculated after analysing the concentration of the pollution of each site. Several points were found from the results. Firstly, in general, city areas including Sangju, Andong showed higher degree of nonpoint pollution than country areas including Cheongsong, Yeongyang. The sub-watersheds located upstream side, such as Yeongju, Bonghwa, Necessarily show better water quality than the sub-watersheds located downstream side, such as Mungyeong, Uiseong. This result indicates that a given pollution condition within the watershed can be more sensitive than location factor to the level of water quality. Secondly, the delivery load and area of watershed were not necessarily correlated in the sense of water quality, while the discharge was shown to be highly correlated to the delively load of pollution. Lastly, sewage and waste caused from population and livestock, as well as landuse factor, were found to significantly contribute to the water pollution. Alternative solutions for controlling pollution source, therefore, should be provided to meet target levels of water quality in these regions.

  • PDF

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Major Watershed Characteristics Influencing Spatial Variability of Stream TP Concentration in the Nakdong River Basin (낙동강 유역에서 하천 TP 농도의 공간적 변동성에 영향을 미치는 주요 유역특성)

  • Seo, Jiyu;Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2021
  • It is important to understand the factors influencing the temporal and spatial variability of water quality in order to establish an effective customized management strategy for contaminated aquatic ecosystems. In this study, the spatial diversity of the 5-year (2015 - 2019) average total phosphorus (TP) concentration observed in 40 Total Maximum Daily Loads unit-basins in the Nakdong River watershed was analyzed using 50 predictive variables of watershed characteristics, climate characteristics, land use characteristics, and soil characteristics. Cross-correlation analysis, a two-stage exhaustive search approach, and Bayesian inference were applied to identify predictors that best matched the time-averaged TP. The predictors that were finally identified included watershed altitude, precipitation in fall, precipitation in winter, residential area, public facilities area, paddy field, soil available phosphate, soil magnesium, soil available silicic acid, and soil potassium. Among them, it was found that the most influential factors for the spatial difference of TP were watershed altitude in watershed characteristics, public facilities area in land use characteristics, and soil available silicic acid in soil characteristics. This means that artificial factors have a great influence on the spatial variability of TP. It is expected that the proposed statistical modeling approach can be applied to the identification of major factors affecting the spatial variability of the temporal average state of various water quality parameters.

Temporal and Spatial Analysis of Non-biodegradable Organic Pollutants in the Geumho River System (금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Lee, In-Jung;Yu, Jae-Jeong;Cheon, Se-Uk;Kim, Kyo-Sik;Han, Kun-Yeun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1343-1362
    • /
    • 2015
  • As a result of analysis based on the observed data for BOD, COD and TOC in order to manage non-biodegradable organics in the Geumho River, COD/BOD ratio was analyzed as the occupying predominance proportion. In this study, the classification(changes in water quality measurement : increase, equal, decrease) and measurement of BOD and COD were analyzed for trends over the past 10 years from 2005 to 2014 in the Geumho River. The Geumho River is expected to need non-biodegradable organics management because BOD was found to be reduced 61.1% and COD was found to be increased 50%. As a result of the analysis of land use, the Geumho-A is a unit watershed area of $921.13km^2$, which is the most common area that is occupied by forests. The Geumho-B is a unit watershed area of $436.8km^2$, which is the area that is highest occupied by agriculture and grass of 24.84%. The Geumho-C is a unit watershed area of $704.56km^2$ accounted for 40.29% of the entire watershed, which is the area that is occupied by urban of 15.12%. Load of non-biodegradable organics, which is not easy biodegradable according to the discharge, appeared to be increased because flow coefficient of COD and TOC at the Geumho-B were estimated larger than 1 value. The management of non-point sources of agricultural land is required because the Geumho-B watershed area occupied by the high proportion of agriculture and field. In this segment it showed to increase the organics that biodegradation is difficult because the ratio of BOD and TOC was decreased rapidly from GR7 to GR8. Thus, countermeasures will be required for this.

Risk Assessment and Potentiality Analysis of Soil Loss at the Nakdong River Watershed Using the Land Use Map, Revised Universal Soil Loss Equation, and Landslide Risk Map (토지이용도, RUSLE, 그리고 산사태 위험도를 이용한 낙동강유역의 토양 침식에 대한 위험성 및 잠재성 분석)

  • Ji, Un;Hwang, Man-Ha;Yeo, Woon-Kwang;Lim, Kwang-Suop
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.617-629
    • /
    • 2012
  • The land use map of the Nakdong River watershed was classified by each land use contents and analyzed to rank the risk of soil loss and erosion. Also, the soil loss and erosion was evaluated in the Nakdong River watershed using Revised Universal Soil Loss Equation (RUSLE) and the subbasin with high risk of soil loss was evaluated with the analysis results of land use contents. Finally, the analyzed results were also compared with the landslide risk map, hence the practical application methods using developed and analyzed results were considered in this study. As a result of land use analysis and RUSLE calculation, it was represented that the Naesung Stream watershed had the high risk for soil loss among the subbasins of the Nakdong River watershed. It was also presented that the high risk area identified by computation of RUSLE was corresponding to the landslide risk area. However, the high risk of soil erosion by land use near the river or wetland was confirmed only through the calculation results of RUSLE.

A Study on the Operational Forecasting of the Nakdong River Flow with a Combined Watershed and Waterbody Model (실시간 낙동강 흐름 예측을 위한 유역 및 수체모델 결합 적용 연구)

  • Na, Eun Hye;Shin, Chang Min;Park, Lan Joo;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.16-24
    • /
    • 2014
  • A combined watershed and receiving waterbody model was developed for operational water flow forecasting of the Nakdong river. The Hydrological Simulation Program Fortran (HSPF) was used for simulating the flow rates at major tributaries. To simulate the flow dynamics in the main stream, a three-dimensional hydrodynamic model, EFDC was used with the inputs derived from the HSPF simulation. The combined models were calibrated and verified using the data measured under different hydrometeological and hydraulic conditions. The model results were generally in good agreement with the field measurements in both calibration and verification. The 7-days forecasting performance of water flows in the Nakdong river was satisfying compared with model calibration results. The forecasting results suggested that the water flow forecasting errors were primarily attributed to the uncertainties of the models, numerical weather prediction, and water release at the hydraulic structures such as upstream dams and weirs. From the results, it is concluded that the combined watershed-waterbody model could successfully simulate the water flows in the Nakdong river. Also, it is suggested that integrating real-time data and information of dam/weir operation plans into model simulation would be essential to improve forecasting reliability.