• Title/Summary/Keyword: Naive Bayesian Network

Search Result 41, Processing Time 0.024 seconds

Smart IoT Hardware Control System using Secure Mobile Messenger (모바일 메신저를 이용한 스마트 IoT 하드웨어 제어 시스템)

  • Lee, Sang-Hyeong;Kim, Dong-Hyun;Lee, Hae-Yeoun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2232-2239
    • /
    • 2016
  • IoT industry has been highlighted in the domestic and foreign country. Since most IoT systems operate separate servers in Internet to control IoT hardwares, there exists the possibility of security problems. Also, IoT systems in markets use their own hardware controllers and devices. As a result, there are many limitations in adding new sensors or devices and using applications to access hardware controllers. To solve these problems, we have developed a novel IoT hardware control system based on a mobile messenger. For the security, we have adopted a secure mobile messenger, Telegram, which has its own security protection. Also, it can improve the easy of the usage without any installation of specific applications. For the enhancement of the system accessibility, the proposed IoT system supports various network protocols. As a result, there are many possibility to include various functions in the system. Finally, our IoT system can analyze the collected information from sensors to provide useful information to the users. Through the experiment, we show that the proposed IoT system can perform well.

Implementation of Probabilistic Predictive Artificial Intelligence for Remote Diagnosis in Aging Society (고령화 사회 원격 진료를 위한 확률론적 예측인공지능 연구)

  • Jeong, Jae-Seung;Ju, Hyunsu
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.6
    • /
    • pp.3-13
    • /
    • 2020
  • 저출산 고령화 사회로의 진입은 대한민국뿐만 아니라 전 세계적으로 많은 사회 문제를 야기하고 있다. 그 중에서 고령 인구 증가로 인한 의료 수요 증가와 이를 뒷받침 할 의료인력 부족은 곧 다가올 사회문제이다. 4차 산업 혁명으로 인해 다양한 사회문제에 대한 혁신적인 해법들이 제시되고 있는데, 본 기고문에서는 다가올 고령화 사회에서 의료인력 부족 등에 의한 해결법으로 원격의료 지원을 위한 인공지능 활용을 다루고자 한다. 병 진단 및 예측을 위한 여러 가지 인공지능 알고리즘은 이미 많이 개발 되어 있으나, 일반적으로 딥러닝에 많이 쓰이는 인공신경망 구조인 합성곱 뉴럴네트워크(convolution neural network)나 기존 퍼셉트론(perceptron) 구조에서 벗어나 확률론적 인공신경망 중에 하나인 베이지안 뉴럴네트워크(Bayesian neural network)를 다루고자 한다. 그중에서 연산효율적이며 뉴로모픽 하드웨어로 구현 가능성이 높고 실제 진단 예측(diagnosis prediction) 문제 해결에 강점을 보이는 알고리즘으로써 naive Bayes classifer를 활용한 연구를 소개하고자 한다.

Predicting Stock Liquidity by Using Ensemble Data Mining Methods

  • Bae, Eun Chan;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.9-19
    • /
    • 2016
  • In finance literature, stock liquidity showing how stocks can be cashed out in the market has received rich attentions from both academicians and practitioners. The reasons are plenty. First, it is known that stock liquidity affects significantly asset pricing. Second, macroeconomic announcements influence liquidity in the stock market. Therefore, stock liquidity itself affects investors' decision and managers' decision as well. Though there exist a great deal of literature about stock liquidity in finance literature, it is quite clear that there are no studies attempting to investigate the stock liquidity issue as one of decision making problems. In finance literature, most of stock liquidity studies had dealt with limited views such as how much it influences stock price, which variables are associated with describing the stock liquidity significantly, etc. However, this paper posits that stock liquidity issue may become a serious decision-making problem, and then be handled by using data mining techniques to estimate its future extent with statistical validity. In this sense, we collected financial data set from a number of manufacturing companies listed in KRX (Korea Exchange) during the period of 2010 to 2013. The reason why we selected dataset from 2010 was to avoid the after-shocks of financial crisis that occurred in 2008. We used Fn-GuidPro system to gather total 5,700 financial data set. Stock liquidity measure was computed by the procedures proposed by Amihud (2002) which is known to show best metrics for showing relationship with daily return. We applied five data mining techniques (or classifiers) such as Bayesian network, support vector machine (SVM), decision tree, neural network, and ensemble method. Bayesian networks include GBN (General Bayesian Network), NBN (Naive BN), TAN (Tree Augmented NBN). Decision tree uses CART and C4.5. Regression result was used as a benchmarking performance. Ensemble method uses two types-integration of two classifiers, and three classifiers. Ensemble method is based on voting for the sake of integrating classifiers. Among the single classifiers, CART showed best performance with 48.2%, compared with 37.18% by regression. Among the ensemble methods, the result from integrating TAN, CART, and SVM was best with 49.25%. Through the additional analysis in individual industries, those relatively stabilized industries like electronic appliances, wholesale & retailing, woods, leather-bags-shoes showed better performance over 50%.

Bayesian Network based Event Recognition in Multi-Camera Environment (멀티카메라 환경에서의 베이지안 네트워크 기반 이벤트 인식)

  • Lim, Soo-Jung;Min, Jun-Ki;Park, Han-Saem;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.248-251
    • /
    • 2007
  • 기존의 멀티 카메라 시스템은 넓은 영역을 커버하거나 이동 중인 물체를 트래킹 하기 위한 목적으로 주로 사용되어 왔다. 하지만 이러한 시스템은 하나의 카메라가 커버하는 영상이 가려지면 정보를 잃게 되는 단점이 있다. 멀티 카메라 시스템은 하나의 영역을 여러 카메라가 커버하도록 하여 이런 단점을 극복할 수 있다. 또한 다양한 시점의 카메라에서 수집되는 영상의 경우, 영상에 따라 담고 있는 정보가 다르므로 여러 카메라의 입력 정보를 함께 활용하여 보다 많은 정보를 얻을 수도 있다. 본 논문은 이런 장점을 활용하여 멀티 카메라 환경에서의 이벤트 인식 문제를 다룬다. 이를 위해 사무실 환경에 8대의 카메라를 설치하였으며, 시나리오에 따라 영상을 수집하였다. 수집된 영상은 전문가에 의해 어노테이션 된 후 인식 모델의 학습에 사용되며, 학습된 베이지안 네트워크 모델의 구조와 파라미터를 도메인 지식에 기반해서 수정하여 최종 이벤트 인식 모델을 설계하였다. 실험 결과 제안하는 이벤트 인식 모델의 인식률은 평균 87.0%로 Naive Bayes보다 우수한 성능을 보임을 확인하였다.

  • PDF

Features Reduction using Logistic Regression for Spam Filtering (로지스틱 회귀 분석을 이용한 스펨 필터링의 특징 축소)

  • Jung, Yong-Gyu;Lee, Bum-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2010
  • Today, The much amount of spam that occupies the mail server and network storage occurs the lack of negative issues, such as overload, and for users to delete the spam should spend time, resources have a problem. Automatic spam filtering on the incidence to solve the problem is essential. A lot of Spam filters have tried to solve the problem emerged as an essential element automatically. Unlike traditional method such as Naive Bayesian, PCA through the many-dimensional data set of spam with a few spindle-dimensional process that narrowed the operation to reduce the burden on certain groups for classification Logistic regression analysis method was used to filter the spam. Through the speed and performance, it was able to get the positive results.

Development of Customized Strategy for Enhancing Automobile Repurchase Using Data Mining Techniques (자동차 재구매 증진을 위한 데이터 마이닝 기반의 맞춤형 전략 개발)

  • Lee, Dong-Wook;Choi, Keun-Ho;Yoo, Dong-Hee
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 2017
  • Purpose Although automobile production has increased since the development of the Korean automobile industry, the number of customers who can purchase automobiles decreases relatively. Therefore, automobile companies need to develop strategies to attract customers and promote their repurchase behaviors. To this end, this paper analyzed customer data from a Korean automobile company using data mining techniques to derive repurchase strategies. Design/methodology/approach We conducted under-sampling to balance the collected data and generated 10 datasets. We then implemented prediction models by applying a decision tree, naive Bayesian, and artificial neural network algorithms to each of the datasets. As a result, we derived 10 patterns consisting of 11 variables affecting customers' decisions about repurchases from the decision tree algorithm, which yielded the best accuracy. Using the derived patterns, we proposed helpful strategies for improving repurchase rates. Findings From the top 10 repurchase patterns, we found that 1) repurchases in January are associated with a specific residential region, 2) repurchases in spring or autumn are associated with whether it is a weekend or not, 3) repurchases in summer are associated with whether the automobile is equipped with a sunroof or not, and 4) a customized promotion for a specific occupation increases the number of repurchases.

Development and Comparison of Data Mining-based Prediction Models of Building Fire Probability

  • Hong, Sung-gwan;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.101-112
    • /
    • 2018
  • A lot of manpower and budgets are being used to prevent fires, and only a small portion of the data generated during this process is used for disaster prevention activities. This study develops a prediction model of fire occurrence probability based on data mining in order to more actively use these data for disaster prevention activities. For this purpose, variables for predicting fire occurrence probability of various buildings were selected and data of construction administrative system, national fire information system, and Korea Fire Insurance Association were collected and integrated data set was constructed. After appropriate data cleansing and preprocessing, various data mining methodologies such as artificial neural network, decision trees, SVM, and Naive Bayesian were used to develop a prediction model of the fire occurrence probability of buildings. The most accurate model among the derived models is Linear SVM model which shows 68.42% as experimental data and 63.54% as verification data and it is the best model to predict fire occurrence probability of buildings. As this study develops the prediction model which uses only the set values of the specific ranges, future studies may explore more opportunites to use various setting values not shown in this study.

A Method of Identifying Ownership of Personal Information exposed in Social Network Service (소셜 네트워크 서비스에 노출된 개인정보의 소유자 식별 방법)

  • Kim, Seok-Hyun;Cho, Jin-Man;Jin, Seung-Hun;Choi, Dae-Seon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1103-1110
    • /
    • 2013
  • This paper proposes a method of identifying ownership of personal information in Social Network Service. In detail, the proposed method automatically decides whether any location information mentioned in twitter indicates the publisher's residence area. Identifying ownership of personal information is necessary part of evaluating risk of opened personal information online. The proposed method uses a set of decision rules that considers 13 features that are lexicographic and syntactic characteristics of the tweet sentences. In an experiment using real twitter data, the proposed method shows better performance (f1-score: 0.876) than the conventional document classification models such as naive bayesian that uses n-gram as a feature set.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.

A Study on Detection of Small Size Malicious Code using Data Mining Method (데이터 마이닝 기법을 이용한 소규모 악성코드 탐지에 관한 연구)

  • Lee, Taek-Hyun;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, the abuse of Internet technology has caused economic and mental harm to society as a whole. Especially, malicious code that is newly created or modified is used as a basic means of various application hacking and cyber security threats by bypassing the existing information protection system. However, research on small-capacity executable files that occupy a large portion of actual malicious code is rather limited. In this paper, we propose a model that can analyze the characteristics of known small capacity executable files by using data mining techniques and to use them for detecting unknown malicious codes. Data mining analysis techniques were performed in various ways such as Naive Bayesian, SVM, decision tree, random forest, artificial neural network, and the accuracy was compared according to the detection level of virustotal. As a result, more than 80% classification accuracy was verified for 34,646 analysis files.