• Title/Summary/Keyword: NaOH aqueous solution

검색결과 192건 처리시간 0.029초

EIS를 이용한 아크 금속용사 표면처리기법이 적용된 강재의 콘크리트 내 부식 거동에 관한 실험적 연구 (An Experimental Study on Corrosion Behavior in Steel of Concrete Applied with Arc Metal Spray Method Surface Treatment Technology Using EIS)

  • 윤창복;박장현;이한승
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권3호
    • /
    • pp.87-95
    • /
    • 2020
  • EIS를 이용한 아크 금속용사 표면처리기법이 적용된 강재의 콘크리트 내 부식거동에 관한 실험적 연구로서 콘크리트 내부환경을 모사한 Ca(OH)2 포화수용액 침지 및, NaCl 수용액에서의 침지실험을 통해 부식거동을 실험하였다. Nyquist plot의 분석을 통하여 등가회로를 도출하였으며 Ca(OH)2 수용액에서의 계면저항과 분극저항을 비교한 결과 계면저항은 Al ATMS가 가장 우수하였으며 분극저항은 Zn ATMS가 가장 우수한 것으로 나타났다. 시멘트 모르타르에 금속용사 표면처리 된 강재를 매립후 NaCl 수용액에 침지하여 침지 시간에 따른 임피던스 측정에서는 초기 침지 임피던스 측정값은 Zn ATMS시험체가 가장 높았으나 침지 2주후에는 Al ATMS 시험체의 임피던스가 가장 높고 안정적으로 나타났다. 이는 이온화 경향이 높은 Al이 강알칼리 환경에서 지속적으로 산화하며 피막을 형성하였으며, 염소 이온의 침투로부터 강재를 보호하기 때문으로 판단된다.

소수성막을 이용한 금속추출 및 물질전달에 관한 연구 (A Study on the Mass Transfer and Metal Extraction by use of Hydrophobic Membrane)

  • 이용진;김영일;박동원
    • 공업화학
    • /
    • 제9권7호
    • /
    • pp.1036-1042
    • /
    • 1998
  • 소수성실관막을 이용하여 수용액 중의 Cr(VI)을 TDA로 추출하고, 이를 NaOH 수용액으로 회수하였다. 역추출공정에서의 물질전달속도는 추출공정에 비해 작았으며, 이러한 결과는 소수성막의 내부를 유기상이 흐르게 되면 추출과정에서는 무시할 수 있었던 막저항이 작용하기 때문이라 판단된다. 막수량을 달리한 4개의 막모듈(60, 100, 150, 300가닥)을 제작하였으며, 각 모듈에 대해 수용상 및 유기상의 유량이 물질전달속도에 미치는 영향에 대해서도 검토하였다. 이 실험으로부터 소수성막을 이용한 추출공정에서는, 막내부를 흐르는 수용상의 유량이 물질전달속도에 큰 영향을 주었으나 유기상 유량의 영향은 미약하다는 것을 알 수 있었다. 반면, 역추출공정에서의 물질전달속도는 수용상(회수액)유량에도 유기상(Cr-TDA 착화합물)의 유량에도 영향을 받지 않음을 알 수 있었다.

  • PDF

CaO/Ethylene glycol 용액에 의한 Polyester섬유의 분해에 관한 연구 (The Decomposition Kinetics of PET Microfiber Fabrics by Saturated CaO/Ethylene glycol Solution)

  • Yoon, Jong Ho;Huh, Man Woo;Kim, Kyung Jae
    • 한국염색가공학회지
    • /
    • 제9권3호
    • /
    • pp.18-26
    • /
    • 1997
  • Polyester microfiber fabrics were decomposed at 100, 110, and 12$0^{\circ}C$ in saturated CaO/ethylene glycol solutions(CaO/EG), and the characteristics of decomposition kinetics were discussed in comparison to those by hot aqueous hydroxide solution(NaOH). The Arrhenius pre-exponential factor(A) was 9.17x $10^{14}$/M $sec^{-1}$and the activation energy($E_{a}$) was 8.19kcal/mol. While the A value was 1.947x $10^{14}$/M $sec^{-1}$ and the ($E_{a}$ value was about 15~19kcal/mol in NaOH-PET decomposition reaction. The much higher A value of the CaO/EG-PET decomposition reaction means that CaO/EG-PET decomposition reaction will occur in a less selective fashion in comparison to the NaOH-PET decomposition reaction. On the other hand, the lower ($E_{a}$) value of the CaO/EG-PET decomposition reaction than that of the NaOH-PET decomposition reaction means that CaO/EG-PET decomposition reaction is less sensitive on the variation of temperature than NaOH-PET decomposition reaction.

  • PDF

A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System

  • Mahmoud, Safe ELdeen M.E.;Youssef, Yehia M.;Hassan, I.;Nosier, Shaaban A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.236-243
    • /
    • 2017
  • A fixed-bed zinc/nickel redox flow battery (RFB) is designed and developed. The proposed cell has been established in the form of a fixed bed RFB. The zinc electrode is immersed in an aqueous NaOH solution (anolyte solution) and the nickel electrode is immersed in the catholyte solution which is a mixture of potassium ferrocyanide, potassium ferricyanide and sodium hydroxide as the supporting electrolyte. In the present work, the electrode area has been maximized to $1500cm^2$ to enforce an increase in the energy efficiency up to 77.02% at a current density $0.06mA/cm^2$ using a flow rate $35cm^3/s$, a concentration of the anolyte solution is $1.5mol\;L^{-1}$ NaOH and the catholyte solution is $1.5mol\;L^{-1}$ NaOH as a supporting electrolyte mixed with $0.2mol\;L^{-1}$ equimolar of potassium ferrocyanide and potassium ferricyanide. The outlined results from this study are described on the basis of battery performance with respect to the current density, velocity in different electrolytes conditions, energy efficiency, voltage efficiency and power of the battery.

알칼리 NaBH4 용액에서 Co-B 촉매를 이용한 수소발생반응에 관한 연구 (A Study on Hydorgen Generation from Alkaline NaBH4 Solution Using Co-B Catalysts)

  • 정성욱;조은애;오인환;홍성안;김성현;남석우
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.137-143
    • /
    • 2004
  • For hydrogen generation from aqueous alkilne $NaBH_4$ solution, Co-B catalyst was prepared by chemical reduction method using $NaBH_4$ as a reduction chemical. Effects of solution temperature, amount of catalyst loading, $NaBH_4$ concentration, and NaOH (a base-stabilizer) concentration on the hydrogen generation rate were exmanined. Compared to Ru catalyst generally used, the low-cost Co-B catalyst exhibited almost comparable activity to the hydrogen generation reaction.

습식 세정법에서 암모니아 대체물질에 관한 연구 (Studies on the aqueous ammonia alternatives in the wet scrubbing method)

  • 김재강;이주열;박병현;최진식
    • 한국응용과학기술학회지
    • /
    • 제33권1호
    • /
    • pp.110-117
    • /
    • 2016
  • 기존 연구에서는 스크러버를 이용한 $NO_2$ 를 제거하기 위해 암모니아 수용액을 적용한다. 하지만 암모니아는 독성 및 악취가 강해 실선 적용에 어려움이 따를 수 있어, 암모니아를 대체할 수 있는 물질을 찾기 위해 이 연구를 진행하였다. 대체 물질로는 수산화나트륨(NaOH), 티오황산나트륨($Na_2S_2O_3$), 요소(Urea)를 사용하였다. 세정액을 제외한 모든 부분은 기존 암모니아를 적용한 실험의 최적 조건과 동일하게 진행하였다. 그 결과 실험에 사용된 세 가지 물질 중 두 물질은 암모니아 용액과 대체가 가능한 것으로 사료되었으며, 최적조건은 각각 NaOH 2.5 %, $Na_2S_2O_3$ 5.0 % 에서 가장 높은 효율을 나타냈다. Urea는 효율이 일정하게 지속되지 않아 대체 물질로는 적합하지 않음을 확인 할 수 있었다.

강화상 나노입자의 용액 반응성이 구리 도금 박막에 미치는 영향 (Influence of Reactivity of Reinforcing Nanoparticles with Aqueous Solution on Electroplating Copper Films)

  • 박지은;오민주;김이슬;이동윤
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.695-701
    • /
    • 2013
  • To understand how reactivity between reinforcing nanoparticles and aqueous solution affects electrodeposited Cu thin films, two types of commercialized cerium oxide (ceria, $CeO_2$) nanoparticles were used with copper sulfate electrolyte to form in-situ nanocomposite films. During this process, we observed variation in colors and pH of the electrolyte depending on the manufacturer. Ceria aqueous solution and nickel sulfate ($NiSO_4$) aqueous solutions were also used for comparison. We checked several parameters which could be key factors contributing to the changes, such as the oxidation number of Cu, chemical impurities of ceria nanoparticles, and so on. Oxidation number was checked by salt formation by chemical reaction between $CuSO_4$ solution and sodium hydroxide (NaOH) solution. We observed that the color changed when $H_2SO_4$ was added to the $CuSO_4$ solution. The same effect was obtained when $H_2SO_4$ was mixed with ceria solution; the color of ceria solution changed from white to yellow. However, the color of $NiSO_4$ solution did not show any significant changes. We did observe slight changes in the pH of the solutions in this study. We did not obtain firm evidence to explain the changes observed in this study, but changes in the color of the electrolyte might be caused by interaction of Cu ion and the by-product of ceria. The mechanical properties of the films were examined by nanoindentation, and reaction between ceria and electrolyte presumably affect the mechanical properties of electrodeposited copper films. We also examined their crystal structures and optical properties by X-ray diffraction (XRD) and UV-Vis spectroscopy.

Preparation of Regenerated Cellulose Fiber via Carbonation (II) - Spinning and Characterization -

  • Oh Sang Youn;Yoo Dong Il;Shin Younsook;Kim Hak Yong;Kim Hwan Chul;Chung Yong Sik;Park Won Ho;Youk Ji Ho
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.95-102
    • /
    • 2005
  • Sodium cellulose carbonate (CC-Na) dissolved in $8.5\;wt\%$ NaOH/ZnO (100/2-3, w/w) aqueous solution was spun into some acidic coagulant systems. Diameter of regenerated cellulose fibers obtained was in the range of $15-50\;{\mu}m$. Serrated or circular cross sectional views were obtained by controlling salt concentration or acidity in the acid/salt/water coagulant systems. Velocity ratio of take-up to spinning was controlled up to 4/1 with increasing spinning velocity from 5 to 40 m/min. Skin structure of was developed at lower acidity or higher concentration of coagulants. Fineness, tenacity and elongation of the regenerated cellulose fibers were in the range of 1.5-27 denier, 1.2-2.2 g/d, and $8-11.3\;\%$, respectively. All of CC-Na and cellulose fibers spun from CC-Na exhibited cellulose II crystalline structure. Crystallinity index was increased with increasing take-up speed.

A Study on the Optimization of Physical and Chemical Parameters for the Precipitate of Sodium Alkylsulfate with Cetylpyridinium Chloride

  • Oh, Sun-Wha;Moon, Sung-Doo;Lee, Don-Keun;Lee, Dong-Jae;Kang, Young-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.280-284
    • /
    • 2004
  • The optimum conditions for the most effective precipitate of surfactant complex of sodium alkylsulfate with cetylpyridinium chloride were studied in the aqueous solution. The parameters such as the alkyl chain length of anionic surfactants, molar ratio of two surfactants, temperature and the concentration of added NaCl in the aqueous solution were correlatively studied for the productivity of the precipitate formation. By the productivity, the optimum conditions to produce complex of anionic surfactant with cationic surfactant were the longer alkyl chain, equivalent molar ratio between anionic and cationic surfactants, 0 $^{\circ}C$ and 1.5 M NaCl.

Al(OH)3를 PVC로 고정화한 PVC-Al(OH)3 비드의 제조와 수중의 불소 이온의 흡착 특성 (Preparation of PVC-Al(OH)3 Beads Immobilized Al(OH)3 with PVC and their Adsorption Characteristics for Fluoride Ions from Aqueous Solution)

  • 유해나;감상규;이민규
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.887-893
    • /
    • 2014
  • In order to remove fluoride ions from aqueous solution, PVC-$Al(OH)_3$ beads were prepared by immobilizing $Al(OH)_3$ with polyvinyl chloride (PVC). The prepared PVC-$Al(OH)_3$ bead was characterized by using SEM, EDS and Zeta potential. Dependences of pH, contact time and initial fluoride concentration on the adsorption of fluoride ions were studied. The optimal pH was in the range of 4~10. The adsorption was rapid during the initial 12 hr, and equilibrium was attained within 72 hr. The adsorption rate of fluoride ions by PVC-$Al(OH)_3$ beads obeyed the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir isotherm model was found to be 62.68 mg/g.