• Title/Summary/Keyword: NaOH수용액

Search Result 197, Processing Time 0.026 seconds

Effect of Electrolyte Composition on The Formation Behavior of Plasma Electrolytic Oxidation Films on Al1050 Alloy (Al1050 합금의 플라즈마 전해산화 피막 형성 거동에 미치는 전해질 조성의 영향)

  • Kim, Ju-Seok;Mun, Seong-Mo;O, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.98.1-98.1
    • /
    • 2017
  • 본 연구에서는 정전류 조건에서 알루미늄 합금의 PEO(Plasma Electrolytic Oxidation) 피막 형성 거동에 대한 전해질 조성의 영향을 아크 발생 양상, 전압-시간 곡선 및 형성된 표면피막의 구조를 관찰하여 연구하였다. 실험에 사용된 전해질은 NaOH 수용액에 $Na_2SiO_3$을 혼합하여 구성되었으며, NaOH와 $Na_2SiO_3$의 농도는 각각 0.01 ~ 1.0 M 와 0 ~ 2.0 M 사이로 조절되었다. 0.01 M NaOH 이하의 용액에서는 양극전압이 500 V 이상으로 상승되고 미세한 아크가 시편 표면 전체에 발생했으나, 0.02 M NaOH 이상의 농도에서는 양극전압이 300 V 이하로 감소되었고 아크발생이 관찰되지 않았다. 아크발생이 일어나지 않는 고농도의 0.5 M NaOH 용액의 경우 0.1 M 이상의 $Na_2SiO_3$를 첨가하였을 때 작은 아크의 무리가 발생되었다. 0.5 M NaOH 수용액에 0.1 M ~ 0.2 M $Na_2SiO_3$가 첨가되었을 땐 아크 무리가 발생하나 이내 일부 영역에서만 반복적으로 아크가 발생하는 로컬 버닝 현상이 일어났다. 한편 0.5 M NaOH 수용액에 0.5 M 이상의 $Na_2SiO_3$가 첨가되었을 때는 로컬 버닝이 일어나지 않고 전 표면에 걸쳐서 아크 무리가 이동하며 PEO 피막이 형성되었다. 0.01 M NaOH 수용액에서 형성된 PEO 피막의 두께는 처리 시간에 따라 증가하지 않고 $10{\mu}m$ 이하의 낮은 값을 보였다. 반면에 NaOH와 $Na_2SiO_3$ 혼합수용액에서 형성된 피막의 두께는 약 $30{\mu}m$ 이상의 높은 값을 보였다.

  • PDF

Critical Breakthrough Pressure through Porous Polymer Membrane (다공성 고분자 분리막의 임계투과압력)

  • Lee, Yong-Taek;Jeon, Hyun-Soo;Ahn, Hyo-Seong;Lee, Young-Jin;Song, In-Ho;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2006
  • The critical breakthrough pressure through both porous PVDF (polyvinylidenefluoride) and PTFE (poly-tetrafluoroethylene) was measured using pure water, $0.1M{\sim}4.0M$ NaOH aqueous solutions and $0.1M{\sim}3.0M\;NaHSO_3$ aqueous solutions. The critical breakthrough pressure through PTFE was observed to be higher than that through PVDF membrane at the same pore size. The critical breakthrough pressure decreased as the molar concentration of NaOH increased up to 1.0 M reaching the minimum and then increased further after 1.0 M NaOH up to 4.0 M NaOH. On the other hand, the critical breakthrough pressure measured using $NaHSO_3$ aqueous solutions was decreased with increasing the concentration of $NaHSO_3$. The critical breakthrough pressure could be well interpreted with Cantor's equation.

Chemical structure and PVC shape after dehydrochlorination of PVC (탈염화수소후의 PVC형상과 화학구조)

  • 신선명;전호석
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.37-42
    • /
    • 2004
  • PVC powder was dehydrochlorinated by hydrothermal reaction at reaction time 0∼5 hr, reaction temperature $200∼250^{\circ}C$ in 0∼2M NaOH solution, and shape and structure of the PVC residue was investigated. The shape of the residue was changed largely according to NaOH concentration. Most of the residue was cohered in the aqueous solution, and many pores less than 10 $\mu\textrm{m}$ were formed on the surface. Dense network structure was well developed inside the residue. On the other hand, the residue in the NaOH solution was not cohered and its shape is roughly spherical. In the IR spectrum of the residue both in water and NaOH solution at $250^{\circ}C$, aromatic rings and absorption peak by C=C double bond were observed. From the results, it was observed that aromatic circle reaction and bridge reaction occured inter and intra molecules.

A basic study on the defiberation of waste newspaper (폐지의 해섬에 관한 연구)

  • 윤태환;김형석;조동성
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1995
  • This study was to investigate the effects oi agitation speed, pulp concentration, ion concentration ill the slurry solution, printed area of the waste newspaper, immerwng time and the temperature on the defiberation process for the waste newspaper. The defikration efficiency at 50% is twice that of 16%. The efficiency is improved as two times according to elevate the agtation speed as two times in the range of 200-2WO r.p.m.. Defiberation with NaOH 1X10-'M solution has higher efficiency than that of NaOH 1 x 1 0 - M solution as 3 times at the conditions of 16%, 1200 r.p.m, and 1% pulp concentration The temperature of immersing salut~on aifects on the efficiency more than immersing time does. Increasing the printed area of newspaper decreases the velocity of defiberation. The alkaline solution is effective to defiberate and the defiberation efficiency at the same dosage of alkalinity is in the order a1 NaOH) KOH) Na,SiO, ) Na,CO, ) Ca(OH)2.

  • PDF

Phosphate 수용액에서 Al6061 합금의 플라즈마 전해산화 피막 형성에 미치는 NaOH의 영향

  • Song, Ui-Seok;Park, Gi-Yong;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.70.2-70.2
    • /
    • 2018
  • 플라즈마 전해 산화(Plasma Electrolytic Oxidation)는 일반 애노다이징 보다 더 높은 전류 혹은 전압을 금속(Al, Ti, Mg) 표면에 인가하여 산화피막을 전기화학적으로 형성시키는 금속표면처리 방법 중의 하나이다. 본 연구에서는 phosphate 수용액에서 정전류를 인가하여 NaOH의 농도에 따라 PEO(Plasma Electrolytic Oxidation) 피막 형성을 전압-시간 그래프 및 형성된 표면피막의 구조를 관찰하여 연구하였다. 실험에는 8 g/L의 sodium phosphate이 사용되었으며, 5 g/L ~ 9 g/L의 NaOH를 사용하였다. NaOH의 농도 상관없이 일부 영역에서만 반복적으로 아크가 발생하는 로컬 버닝 현상 없이 미세한 아크가 시표 표면 전체에 발생하였고, NaOH의 농도가 증가할수록 형성된 PEO 피막의 두께는 감소하고, 평균 표면 거칠기는 증가하는 경향을 보인다. 형성된 피막의 구조를 HR-SEM, EDX 등을 이용하여 관찰하였다.

  • PDF

Phosphate 수용액에서 Al6061 합금의 플라즈마 전해산화 피막 형성에 미치는 NaOH의 영향

  • Song, Ui-Seok;Park, Gi-Yong;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.29.2-29.2
    • /
    • 2018
  • 플라즈마 전해 산화(Plasma Electrolytic Oxidation)는 일반 애노다이징 보다 더 높은 전류 혹은 전압을 금속(Al, Ti, Mg) 표면에 인가하여 산화피막을 전기화학적으로 형성시키는 금속표면처리 방법 중의 하나이다. 본 연구에서는 phosphate 수용액에서 정전류를 인가하여 NaOH의 농도에 따라 PEO(Plasma Electrolytic Oxidation) 피막 형성을 전압-시간 그래프 및 형성된 표면피막의 구조를 관찰하여 연구하였다. 실험에는 8 g/L의 sodium phosphate이 사용되었으며, 5 g/L ~ 9 g/L의 NaOH를 사용하였다. NaOH의 농도 상관없이 일부 영역에서만 반복적으로 아크가 발생하는 로컬 버닝 현상 없이 미세한 아크가 시표 표면 전체에 발생하였고, NaOH의 농도가 증가할수록 형성된 PEO 피막의 두께는 감소하고, 평균 표면 거칠기는 증가하는 경향을 보인다. 형성된 피막의 구조를 HR-SEM, EDX 등을 이용하여 관찰하였다.

  • PDF

Preparation of Zirconia Nanocrystalline Powder by the Hydrothemal Treatment at low Temperature (수열법에 의한 저온 결정형 지르코니아 나노 분말의 제조)

  • Noh, Hee-Jin;Lee, Jong-Kook;Seo, Dong-Seok;Hwang, Kyu-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.308-314
    • /
    • 2002
  • The nanocrystalline zirconia powder was synthesized from the zirconium hydroxide precipitate by hydrothermal process with the reaction temperature range 100∼250$^{\circ}$C, reaction time 1∼48 hours and additive concentration 1, 5 N NaOH solutions. The lower hydrothermal treatment temperature, the inner spherical tetragonal zirconia was synthesized. The fraction of monoclinic phase zirconia with rod shape increased with increasing the hydrothermal treatment temperature. As the concentration of the NaOH solution increases, the synthesized particle in breadth and length increased; breadth and length ratio decreased. In the case of the low concentration of NaOH solution, however, the particle length became relatively larger than its breadth resulting in the rod-shaped particles with bigger aspect ratio.

Chemical Resistance Characteristics of the Chlorinated Polyvinyl Chloride Microfiltration Flat-sheet Membrane with respect to Immersion Time (침지시간에 따른 Chlorinated Polyvinyl Chloride 정밀여과용 평막의 내화학적 특성)

  • Ryu, Jae-Sang;Son, Jae-Ik;Kim, Hee-Jun;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • This study aimed to measure chemical resistance properties of the microfiltration flat-sheet membrane made by Chlorinated Polyvinyl Chloride (CPVC) with respect to the immersed time. The solutions of effective chlorine 0.5 wt% NaClO, HCl 1 wt% and pH 4 buffer under acidic condition, NaOH 4 wt% and pH 10 buffer under alkine condition were used as widely applied chemicals for membrane washing. The CPVC membrane samples were immersed in the above chemical solutions during 1, 3, 5 and 10 days at 5, 25 and $50^{\circ}C$, respectively. After then, the tensile strength and elongation at break as the chemical durability for the samples were measured and evaluated. The tensile strength decreased within 5% at $5^{\circ}C$, but decreased up to 17% at 25 and $50^{\circ}C$ for 0.5 wt% NaClO solution mainly used for membrane cleaning. The chemical resistance of CPVC membrane was good enough for HCl 1 wt% and pH 4 buffer acid solutions, but the most vulnerable for NaOH 4 wt% solution.

Elution of Plasticizer fvom PVC Sheet in Alkaline Solutions (알카리수용액중에서 PVC Sheet로부터 가소제의 추출)

  • 신선명;전석호;한오형
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.14-19
    • /
    • 2002
  • PVC sheet was treated in O~10M NaOH solutions at $80~150^{\circ}C$ for O~7 hour, in order to study the leaching phenomena of plasticizer. The yield of phthalic acid produced by hydrolysis of DOP was increased greatly with increasing temperature and NaOH concentration by accelerating of alkali catalyst. The yield of phthalic acid was reached ca. 100% in 10M NaOH at $150^{\circ}C$ over 3 hours. Therefore, the plasticizer containing 30% in PVC sheet could be hydrolyzed in alkali solutions before the occurrence of dehydrochlorination. Besides, in the thermal reaction, the pores were produced in the PVCsheet by the hydrolysis of DOP.

Efficacy of Cu(II) Adsorption by Chemical Modification of Pine Bark (소나무 수피의 화학적 처리에 의한 Cu(II) 흡착 효과)

  • Park, Se-Keun;Kim, Ha-Na;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.930-937
    • /
    • 2007
  • Korean pine(Pinus densiflora) bark was evaluated for its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled barks were treated with 1 N NaOH or 1 N HCl to examine the effect of surface modification. For comparison, untreated bark was tested under same condition. Within the tested pH range between 3 and 6, NaOH treatment increased Cu(II) adsorption capacity by $139\sim184%$, while HCl treatment decreased it by $37\sim42%$. Maximum copper ion uptake by bark was observed at pH $5\sim6$, but pH of solution was not a potent influence. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto bark. For NaOH-treated bark, the calculated sorption capacity$(q_e)$ increased from 6.58 to 12.77 mg/g, while the equilibrium rate constant$(k_2)$ decreased from 0.284 to 0.014 g/mg/min as initial Cu(II) concentration doubled from 100 mg/L. A batch isotherm test using NaOH-treated bark showed that equilibrium sorption data were represented by both the Langmuir model and the Freundlich model. It was confirmed that carboxylic acid of bark was involved in the Cu(II) adsorption. For NaOH-treated bark, in particular, carboxylate ion produced by hydrolysis or saponification appeared to be a major functional roup responsible for the enhanced Cu(II) sorption.