• Title/Summary/Keyword: NaCl Inhibition

Search Result 184, Processing Time 0.025 seconds

Studies on the Activity of Microsomal ATPase of the Rabbit Kidney (가토(家兎) 신장(腎臟) Microsome 분획내(分劃內) ATPase 활성도(活性度)에 관(關)한 연구(硏究))

  • Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.141-150
    • /
    • 1967
  • The present investigation was initially undertaken to see if there exists $Na^+-K^+$ activated ATPase in the microsome fraction of the kidney. Having confirmed the presence of such an enzyme, further attempts have been made to characterize its nature and the following conclusions were obtained: (1) The ATPase activity was greatest at the $Na^+$ concentration of 100 mM as well as at $K^+$ concentration of 10 mM. Moreover, the ATPase activity was found to be depressed by $Ca^{++}$ in the presence of $Mg^{++}$. (2) While the ATPase activity was depressed by Ouabain, the magnitude of inhibition was greater in the Na medium than in the K medium. (3) NaCN augmented the ATPase activity whereas NaF and IAA depressed it. On the other hand, DNP had little influence on the ATPase activity. (4) Diamox, vasopressin and aldosterone had no effect while $HgCl_2$ markedly depressed the ATPase activity These findings indicate that the nature of ATPase isolated from the microsome fraction of the rabbit kidney is quite similar to that from other organs such as the heart and the muscle, although there are certain features specific to the type of organs.

  • PDF

In Vitro Antitumor Activity of BCNU-Loaded PLGA Wafer Containing Additives (첨가제 함유 BCNU/PLGA웨이퍼의 in vitro 항암 활성)

  • Lee, Jin-Soo;An, Tae-Kun;Shin, Phil-Kyung;Chae, Ghang-Soo;Jeong, Je-Kyo;Lee, Bong;Cho, Sun-Hang;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • We fabricated the 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine)-loaded PLGA wafers containing poly(N-vinylpyrrolidone) (PVP) or tedium chloride (NaCl) in order to control the release profile of drug in special shape (3 in diameter, 1 mm in thickness) by direct compression method. In vitro release profiles of BCNU could be controlled by additives contained in the wafers. Initial release amount, release rate and duration of BCNU could be controlled with presence of PVP or NaCl. In vitro antitumor activity accessed using 9L gliosarcoma cell line has been evaluated by assaying the viability of cells treated with BCNU released from the wafers containing additives resulting in continuous growth inhibition of 9L gliosarcoma tumor cells. Specially, the continuous growth inhibition of BCNU-loaded PLGA wafers containing additives was more effective than that of non-additive BCNU-loaded PLGA wafers. The cytotoxic effect of the drug from the wafers containing NaCl as compared to wafers containing PVP was more enhanced.

Effects of SITS on Sodium Transport, Oxygen Consumption and Na-K-ATPase of the Frog Skin (개구리 피부의 Sodium 이동, 산소 소모량 및 Na-K-ATPase에 대한 SITS의 영향)

  • Lee, Seung-Mook;An, Mi-Ra;Lee, Syng-Ill;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 1983
  • Effects of SITS (4-acetamido-4'-isothiocyano-2, 2'-disulfonic stilbene) on a $Na^+$ transport, tissue oxygen consumption and Na-K-ATPase activity were studied in isolated frog skin preparations. $Na^+$ transport was estimated by measuring the short-circuit current(SC) across the skin; oxygen consumption was measured in separated epidermis as well as in intact skin; and Na-K-ATPase was assayed in $24,000{\times}g$ fraction of epidermal homogenates. The SCC across the skin Was rapidly and substantially reduced in the presence of 10 mM SITS in the medium bathing the outside(mucosal) surface of the skin. When the drug was added to the inside(serosal) bathing medium, there was about 20 min delay for inhibition of SCC and the effect was less pronounced. The above effect of SITS was independent of the presence of $Cl^-$ in the bathing medium. The oxygen consumption of the skin tissue was not affected by SITS, but the Na-K-ATPase activity of a subcellular fraction of the skin was significantly inhibited. These results suggest that SITS retards $Na^+$ transport across the frog skin primarily by interfering $Na^+$ entry across the mucosal membrance of the epithelial cell, although an effect on $Na^+$ pump can not be ruled out completely.

  • PDF

Purification and Characterization of a Novel Alkaline Protease from Bacillus horikoshii

  • Joo, Han-Seung;Choi, Jang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.58-68
    • /
    • 2012
  • An investigation was conducted on the enhancement of production and purification of an oxidant and SDS-stable alkaline protease (BHAP) secreted by an alkalophilic Bacillus horikoshii, which was screened from the body fluid of a unique Korean polychaeta (Periserrula leucophryna) living in the tidal mud flats of Kwangwha Island in the Korean West Sea. A prominent effect on BHAP production was obtained by adding 2% maltose, 1% sodium citrate, 0.8% NaCl, and 0.6% sodium carbonate to the culturing medium. The optimal medium for BHAP production contained (g/l) SBM, 15; casein, 10; $K_2HPO_4$, 2; $KH_2PO_4$, 2; maltose, 20; sodium citrate, 10; $MgSO_4$, 0.06; NaCl, 8; and $Na_2CO_3$, 6. A protease yield of approximately 56,000 U/ml was achieved using the optimized medium, which is an increase of approximately 5.5-fold compared with the previous optimization (10,050 U/ml). The BHAP was homogenously purified 34-fold with an overall recovery of 34% and a specific activity of 223,090 U/mg protein using adsorption with Diaion HPA75, hydrophobic interaction chromatography (HIC) on Phenyl-Sepharose, and ion-exchange chromatography on a DEAE- and CM-Sepharose column. The purified BHAP was determined a homogeneous by SDS-PAGE, with an apparent molecular mass of 28 kDa, and it showed extreme stability towards organic solvents, SDS, and oxidizing agents. The $K_m$ and $k_{cat}$ values were 78.7 ${\mu}M$ and $217.4s^{-1}$ for N-succinyl-Ala-Ala-Pro-Phe-pNA at $37^{\circ}C$ and pH 9, respectively. The inhibition profile exhibited by PMSF suggested that the protease from B. horikoshii belongs to the family of serine proteases. The BHAP, which showed high stability against SDS and $H_2O_2$, has significance for industrial application, such as additives in detergent and feed industries.

Anti-cancer Activity of Styrax japonica Bark Extrats (때죽나무(Styrax japonica) 수피 추출물의 항암 활성)

  • Kwon, Oh-Woong;Kim, Woo-Jin;Lee, Hak-Ju
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.68-77
    • /
    • 2014
  • A compound has been isolated from the methanol extract of Styrax japonica bark using conventional chromatographic methods including silica gel chromatography, TLC and HPLC. The molecular formula of Styraxlignolide F analyzed by spectrometric analyses using FAB-MS, NMR was found to be $C_{27}H_{34}O_{11}Na$. The cytotoxicity of the styralignolide F was showed 15.2% in $1.0mg/m{\ell}$ on human kidney cell (HEK 293). As anticancer activity of $CH_2Cl_2$ fraction, over 60% of AGS and MCF-7 cells were inhibited in concentration of $1.0mg/m{\ell}$. In the results of anticancer test using quantification of Bcl-2, $CH_2Cl_2$ fraction showed lower Bcl-2 and p53 expression than those of styraxlignolide F and other fractions. In apoptosis of human lung carcunoma cancer cell (A549), $CH_2Cl_2$ fraction showed the highest inhibition rate (46.9%) and styralignolide F was the next (43.5%). The $CH_2Cl_2$ fraction showed higher anti-cancer activities than isolated substance (styraxlignolide F), probably due to the crude extract showing synergic effects by other components.

Optimal Culture Conditions for Production of Subtilisin-like Protease Inhibitor from Streptomyces thermocarboxydus C12 (Streptomyces thermocarboxydus C12에서 Subtilisin-like Protease Inhibitor 생산을 위한 최적배양조건)

  • Kang, Sung-Il;Jang, Young-Boo;Choi, Gyeong-Lim;Choi, Byeong-Dae;Kong, Jai-Yul;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The objective of this paper was to investigate optimal culture conditions for the production of an inhibitor against subtilisin-like protease from Streptomyces thermocarboxydus (S. thermocarboxydus) C12 isolated from sediments of Gwangyang coast. The optimal temperature and initial pH for the production of subtilisin-like protease inhibitor were $40^{\circ}C$ and pH 8.0, respectively. Inhibition activities were high for galactose, glucose and fructose. The best carbon source and its concentration were galactose and 1.6% (w/v), respectively. Inhibition activities were also high in medium containing polypeptone, proteose and peptone. Optimal nitrogen source and concentration were protease peptone and 0.5% (w/v), respectively. Optimal concentrations for inhibitor production were 1% (w/v) for NaCl and 1 mM LiCl for metal salts. The subtilisin-like protease inhibitor from S. thermocarboxydus C12 showed a maximum inhibitor activity after cultivation for 84 h under the optimized medium.

Effect of specific serum IgG antibody against Streptococcus mutans on the adherence of S. mutans to smooth surface in vitro (특이혈청항체(特異血淸抗體) IgG분획(分劃)이 Streptococcus mutans의 평활면(平滑面) 부착(附着)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee, Jean-Yong;Choi, Eu-Gene;Ha, Youn-Mun;Kim, Chan-Soo
    • The Journal of the Korean Society for Microbiology
    • /
    • v.17 no.1
    • /
    • pp.75-85
    • /
    • 1982
  • In order to demonstrate the effect of specific serum IgG antibody on the adherence of Streptococcus mutans to smooth surface and the mechanism of effective adherence inhibition by IgG antibody, in the present study authors obtained purified IgG from different immunogen preparations of S. mutans NCTC 10449(serotype c) and observed the effect of each IgG preparation on the adherence of each S. mutans strain cultured in different conditions. In addition, the present study was undertaken to observe the cross-reactivity of IgG and the effect of sucrose concentration on the adherence of S. mutans in vitro non-growth condition. The adherence of S. mutans to glass surface was effectively inhibited by serum IgG antibody. At the same IgG concentrations, anti-2% fructose grown/1N NaCl washed S. mutans NCTC 10449 cell showed greater adherence inhibitory effect to S. mutans strains than anti-2% sucrose grown and anti-S. mutans NCTC 10449 cell wall, and the greater inhibitory effects of IgG preparations were observed in assay using 2% fructose grown S. mutans cell preparations than using 0.1% sucrose grown cell preparations. These results suggest that the more effective adherence inhibition by serum IgG antibody is due to the reaction with S. mutans cell surface antigens rather than glucan and cell-associated glucosyltransferase. The greatest adherence inhibitory effect of IgG to S. mutans strains was observed on homologous NCTC 10449 strain and the inhibition cross-reactivities were observed between serotype c, e, and f strains. More pronounced cross-reactivity of adherence inhibition of IgG to S. mutans was observed in assay using anti-2% fructose grown/1N NaCl washed cell than using other IgG preparations, and observed in assay using 2% fructose grown S. mutans cell preparations than 0.1% sucrose grown cell preparations. It was interested that low, but adequate concentration of reactive IgG antibody significantly increased the adherence ability of S. mutans. This result may be due to the formation of small cell aggregates resulted in a increase in the numbers of organisms which adhered to glass surface. The adherence of S. mutans to glass surface was possible in the absence of glucan-synthetic activity. Low level of sucrose significantly increased the adherence ability of S. mutans to glass surface, but excessive amount of sucrose induced large cell aggregates resulted in a decrease in the numbers of organism which adhered.

  • PDF

Corrosion Inhibition of Steel Rebar in Concrete with the Coated MCI 2022

  • Bezad Bavarian;Lisa Reiner;Kim, Chong Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.63-67
    • /
    • 2002
  • The induced chemical and salt solution in water or admixture are originated to the corrosion process of the steeo rebar. These liquids penetrate into concrete as the accompanied by the chemical reaction and cause to attack the steel rebar in concrete. Concrete surfaces which it exposed to deicing, water and sea water is allowed to enter the chlorides in the structures. To prevent from the source of corrosion and deterioration Is subjected to put an end to corrode or reduce to contaminate on the steel rebar. As this reason the MCI 2022 products are applied to the surface of concrete and steel rebar. The concrete samples were made of to the kind of four, i.e. RF, MR, MS, and MM. Corrosion inhibitor is applied to coat on the surface of concrete after it had been cured for 28days. Specimen were immersed in a 3.5% sodium chloride solution. Concrete specimen were tested to determine the changes of the resistance polarization, Rp, over a 22 weeks period. MCI 2022 is significantly shown the corrosion inhibition of steel rebar in 3.5% NaCl solution. In the each different concrete sample, MS and MM is seemed to be better than others. The results are proofed that MCI 2022 is promised to maintain the inhibition of corrosion with high resistance polarization of the steel rebar in concrete.

  • PDF

Putrescine Transport in a Cyanobacterium Synechocystis sp. PCC 6803

  • Raksajit, Wuttinun;Maenpaa, Pirkko;Incharoensakdi, Aran
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.394-399
    • /
    • 2006
  • The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent $K_m$ of $92{\pm}10\;{\mu}M$ and $V_{max}$ of $0.33{\pm}0.05\;nmol/min/mg$ protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.