DOI QR코드

DOI QR Code

Putrescine Transport in a Cyanobacterium Synechocystis sp. PCC 6803

  • Raksajit, Wuttinun (Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Maenpaa, Pirkko (Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku) ;
  • Incharoensakdi, Aran (Department of Biochemistry, Faculty of Science, Chulalongkorn University)
  • Received : 2006.02.08
  • Accepted : 2006.04.03
  • Published : 2006.07.31

Abstract

The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent $K_m$ of $92{\pm}10\;{\mu}M$ and $V_{max}$ of $0.33{\pm}0.05\;nmol/min/mg$ protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.

Keywords

References

  1. Basselin, M., Coomb, G. H. and Barrett, M. P. (2000) Putrescine and spermidine transport in Leishmania. Mol. Biochem. Parasitol. 109, 37-46 https://doi.org/10.1016/S0166-6851(00)00234-6
  2. Bouchereau, A., Aziz, A., Larher, F. and Martin-Tanguy, J. (1999) Polyamines and environmental challenge: recent development. Plant Sci. Rev. 140, 103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Dunlap, V. J. and Csonka. L. N. (1985) Osmotic regulation of Lproline transport in Salmonella typhimurium. J. Bacteriol. 163, 296-304
  5. Ferjani, A., Mustardy, L., Sulpice, R., Marin, K., Suzuki, I., Hagemann, M. and Murata, N. (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol. 131, 1628-1637 https://doi.org/10.1104/pp.102.017277
  6. Flores, H. E. and Galston, A. W. (1984) Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol. 75, 102-109 https://doi.org/10.1104/pp.75.1.102
  7. Fraser, K. R. and O'Byrne, C. P. (2002) Osmoprotection by carnitine in a Listeria monocytogenes mutant lacking the OpuC transporter: evidence for a low affinity carnitine uptake system. FEMS Microbiol. Lett. 221, 189-194
  8. Guarino, L. A. and Cohen, S. S. (1979) Uptake and accumulation of putrescine and its lethality in Anacystis nidulans. Proc. Natl. Acad. Sci. USA 76, 3184-3188 https://doi.org/10.1073/pnas.76.7.3184
  9. Guarino, L. A. and Cohen, S. S. (1979) Mechanism of toxicity of putrescine in Anacystis nidulans. Proc. Natl. Acad. Sci. USA 76, 3660-3664 https://doi.org/10.1073/pnas.76.8.3660
  10. Heide, T., Stuart, M. C. A. and Poolman, B. (2001) On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20, 7022-7032 https://doi.org/10.1093/emboj/20.24.7022
  11. Igarashi, K., Ito, K. and Kashiwagi, K. (2001) Polyamine uptake systems in Escherichia coli. Res. Micromol. 152, 271-278 https://doi.org/10.1016/S0923-2508(01)01198-6
  12. Igarashi, K. and Kashiwagi, K. (1999) Polyamine transport in bacteria and yeast. Biochem. J. 344, 633-642 https://doi.org/10.1042/0264-6021:3440633
  13. Incharoensakdi, A. and Karnchanatat, A. (2003) Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica. Biochim. Biophys. Acta 1621, 102-109 https://doi.org/10.1016/S0304-4165(03)00052-7
  14. Incharoensakdi, A. and Laloknam, S. (2005) Nitrate uptake in the halotolerant cyanobacterium Aphanothece halophytica is energy-dependent driven by $\Delta$pH. J. Biochem. Mol. Biol. 38, 467-473
  15. Incharoensakdi, A. and Wangsupa, J. (2003) Nitrate uptake by the halotolerant cyanobacterium Aphanothece halophytica grown under non-stress and salt-stress conditions. Curr. Microbiol. 47, 255-259 https://doi.org/10.1007/s00284-002-4000-6
  16. Incharoensakdi, A. and Wutipraditkul, N. (1999) Accumulation of glycinebetaine and its synthesis from radioactive precursors under salt-stress in the cyanobacterium Aphanothece halophytica. J. Appl. Phycol. 11, 515-523 https://doi.org/10.1023/A:1008186309006
  17. Jantaro, S., Maenpaa, P., Mulo, P. and Incharoensakdi, A. (2003) Content and biosynthesis of polyamine in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol Lett. 228, 129-135 https://doi.org/10.1016/S0378-1097(03)00747-X
  18. Jebbar, M., Blohn, C. and Bremer, E. (1997) Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol. Lett. 154, 325-330 https://doi.org/10.1111/j.1574-6968.1997.tb12663.x
  19. Kakinuma, Y., Matsuda, N. and Igarashi, K. (1992) Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1107, 126-130 https://doi.org/10.1016/0005-2736(92)90337-L
  20. Kashiwaki, K., Kobayashi, H. and Igarashi, K. (1986) Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli. J. Bacteriol. 165, 972-977 https://doi.org/10.1128/jb.165.3.972-977.1986
  21. Matsuda, N., Kobayashi, H., Kotoh, H., Ogawa, T., Futatsugi, L., Nakamura, T., Bakker, E. P. and Uozumi, N. (2004) Na$^{+}$- dependent K$^{+}$ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phase of cell adaptation to hyperosmotic shock. J. Biol. Chem. 279, 54952-54962 https://doi.org/10.1074/jbc.M407268200
  22. Mikkat, S., Effmert, U. and Hagemann, M. (1997) Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 167, 112-118 https://doi.org/10.1007/s002030050423
  23. Munro, G. F., Bell, C. A. and Linderman, M. (1974) Multiple transport components for putrescine in Escherichia coli. J. Bacteriol. 118, 952-963
  24. Rinehart, C. A., Jr. and Chen, K. Y. (1984) Characterization of polyamine transport system in mouse neuroblastoma cells. J. Biol. Chem. 259, 4750-4756
  25. Sakata, K., Kashiwaki, K., Sharmin, S., Ueda, S. and Igarashi, K. (2003) Acrolein produced from polyamines as one of the uraemic toxins. Biochem. Soc. Trans. 31, 371-374 https://doi.org/10.1042/BST0310371
  26. Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A. and Ogawa, T. (2002) Gene essential to sodium-dependent bicarbonate transport in cyanobacteria, function and phylogenetic analysis. J. Biol. Chem. 277, 18658-18664 https://doi.org/10.1074/jbc.M112468200
  27. Tabor, C. W. and Tabor, H. (1985) Polyamines in microorganisms. Microbiol. Rev. 49, 81-89
  28. Tassoni, A., Napier, R. M., Franceschetti, M., Venis, M. A. and Bagni, N. (2002) Spermidine-binding protein. Purification and expression analysis in maize. Plant Physiol. 128, 1303-1312 https://doi.org/10.1104/pp.010951
  29. Theiss, C., Bohley, P., Bisswanger, H. and Voigt, J. (2004) Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity. J. Plant Physiol. 161, 3-14 https://doi.org/10.1078/0176-1617-00987
  30. Theiss, C., Bohley, P. and Voigt, J. (2002) Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 128, 1470-1479 https://doi.org/10.1104/pp.010896
  31. Thomas, T. and Thomas, T. J. (2001) Polyamine in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol. Life. Sci. 58, 244-258 https://doi.org/10.1007/PL00000852
  32. Wood, J. M. (1999) Osmosensing by bacteria: signals and membrane-base sensors. Microbiol. Mol. Biol. Rev. 63, 230-262

Cited by

  1. Recombinant polyamine-binding protein of Synechocystis sp. PCC 6803 specifically binds to and is induced by polyamines vol.76, pp.6, 2011, https://doi.org/10.1134/S0006297911060137
  2. Short-Term UV-B and UV-C Radiations Preferentially Decrease Spermidine Contents and Arginine Decarboxylase Transcript Levels of Synechocystis sp. PCC 6803 vol.62, pp.2, 2011, https://doi.org/10.1007/s00284-010-9724-0
  3. Na+-stimulated nitrate uptake with increased activity under osmotic upshift in Synechocystis sp. strain PCC 6803 vol.27, pp.10, 2011, https://doi.org/10.1007/s11274-011-0706-6
  4. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacteriumAnabaena vol.3, pp.5, 2014, https://doi.org/10.1002/mbo3.207
  5. Characterization of the substrate-binding PotD subunit in Synechocystis sp. strain PCC 6803 vol.192, pp.10, 2010, https://doi.org/10.1007/s00203-010-0607-3
  6. Involvement of Polyamine Binding Protein D (PotD) of Synechocystis sp. PCC 6803 in Spermidine Uptake and Excretion vol.69, pp.4, 2014, https://doi.org/10.1007/s00284-014-0605-9
  7. Activity assay of membrane transport proteins vol.40, pp.4, 2008, https://doi.org/10.1111/j.1745-7270.2008.00400.x