References
- Basselin, M., Coomb, G. H. and Barrett, M. P. (2000) Putrescine and spermidine transport in Leishmania. Mol. Biochem. Parasitol. 109, 37-46 https://doi.org/10.1016/S0166-6851(00)00234-6
- Bouchereau, A., Aziz, A., Larher, F. and Martin-Tanguy, J. (1999) Polyamines and environmental challenge: recent development. Plant Sci. Rev. 140, 103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Dunlap, V. J. and Csonka. L. N. (1985) Osmotic regulation of Lproline transport in Salmonella typhimurium. J. Bacteriol. 163, 296-304
- Ferjani, A., Mustardy, L., Sulpice, R., Marin, K., Suzuki, I., Hagemann, M. and Murata, N. (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol. 131, 1628-1637 https://doi.org/10.1104/pp.102.017277
- Flores, H. E. and Galston, A. W. (1984) Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol. 75, 102-109 https://doi.org/10.1104/pp.75.1.102
- Fraser, K. R. and O'Byrne, C. P. (2002) Osmoprotection by carnitine in a Listeria monocytogenes mutant lacking the OpuC transporter: evidence for a low affinity carnitine uptake system. FEMS Microbiol. Lett. 221, 189-194
- Guarino, L. A. and Cohen, S. S. (1979) Uptake and accumulation of putrescine and its lethality in Anacystis nidulans. Proc. Natl. Acad. Sci. USA 76, 3184-3188 https://doi.org/10.1073/pnas.76.7.3184
- Guarino, L. A. and Cohen, S. S. (1979) Mechanism of toxicity of putrescine in Anacystis nidulans. Proc. Natl. Acad. Sci. USA 76, 3660-3664 https://doi.org/10.1073/pnas.76.8.3660
- Heide, T., Stuart, M. C. A. and Poolman, B. (2001) On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20, 7022-7032 https://doi.org/10.1093/emboj/20.24.7022
- Igarashi, K., Ito, K. and Kashiwagi, K. (2001) Polyamine uptake systems in Escherichia coli. Res. Micromol. 152, 271-278 https://doi.org/10.1016/S0923-2508(01)01198-6
- Igarashi, K. and Kashiwagi, K. (1999) Polyamine transport in bacteria and yeast. Biochem. J. 344, 633-642 https://doi.org/10.1042/0264-6021:3440633
- Incharoensakdi, A. and Karnchanatat, A. (2003) Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica. Biochim. Biophys. Acta 1621, 102-109 https://doi.org/10.1016/S0304-4165(03)00052-7
-
Incharoensakdi, A. and Laloknam, S. (2005) Nitrate uptake in the halotolerant cyanobacterium Aphanothece halophytica is energy-dependent driven by
$\Delta$ pH. J. Biochem. Mol. Biol. 38, 467-473 - Incharoensakdi, A. and Wangsupa, J. (2003) Nitrate uptake by the halotolerant cyanobacterium Aphanothece halophytica grown under non-stress and salt-stress conditions. Curr. Microbiol. 47, 255-259 https://doi.org/10.1007/s00284-002-4000-6
- Incharoensakdi, A. and Wutipraditkul, N. (1999) Accumulation of glycinebetaine and its synthesis from radioactive precursors under salt-stress in the cyanobacterium Aphanothece halophytica. J. Appl. Phycol. 11, 515-523 https://doi.org/10.1023/A:1008186309006
- Jantaro, S., Maenpaa, P., Mulo, P. and Incharoensakdi, A. (2003) Content and biosynthesis of polyamine in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol Lett. 228, 129-135 https://doi.org/10.1016/S0378-1097(03)00747-X
- Jebbar, M., Blohn, C. and Bremer, E. (1997) Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol. Lett. 154, 325-330 https://doi.org/10.1111/j.1574-6968.1997.tb12663.x
- Kakinuma, Y., Matsuda, N. and Igarashi, K. (1992) Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1107, 126-130 https://doi.org/10.1016/0005-2736(92)90337-L
- Kashiwaki, K., Kobayashi, H. and Igarashi, K. (1986) Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli. J. Bacteriol. 165, 972-977 https://doi.org/10.1128/jb.165.3.972-977.1986
-
Matsuda, N., Kobayashi, H., Kotoh, H., Ogawa, T., Futatsugi, L., Nakamura, T., Bakker, E. P. and Uozumi, N. (2004) Na
$^{+}$ - dependent K$^{+}$ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phase of cell adaptation to hyperosmotic shock. J. Biol. Chem. 279, 54952-54962 https://doi.org/10.1074/jbc.M407268200 - Mikkat, S., Effmert, U. and Hagemann, M. (1997) Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 167, 112-118 https://doi.org/10.1007/s002030050423
- Munro, G. F., Bell, C. A. and Linderman, M. (1974) Multiple transport components for putrescine in Escherichia coli. J. Bacteriol. 118, 952-963
- Rinehart, C. A., Jr. and Chen, K. Y. (1984) Characterization of polyamine transport system in mouse neuroblastoma cells. J. Biol. Chem. 259, 4750-4756
- Sakata, K., Kashiwaki, K., Sharmin, S., Ueda, S. and Igarashi, K. (2003) Acrolein produced from polyamines as one of the uraemic toxins. Biochem. Soc. Trans. 31, 371-374 https://doi.org/10.1042/BST0310371
- Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A. and Ogawa, T. (2002) Gene essential to sodium-dependent bicarbonate transport in cyanobacteria, function and phylogenetic analysis. J. Biol. Chem. 277, 18658-18664 https://doi.org/10.1074/jbc.M112468200
- Tabor, C. W. and Tabor, H. (1985) Polyamines in microorganisms. Microbiol. Rev. 49, 81-89
- Tassoni, A., Napier, R. M., Franceschetti, M., Venis, M. A. and Bagni, N. (2002) Spermidine-binding protein. Purification and expression analysis in maize. Plant Physiol. 128, 1303-1312 https://doi.org/10.1104/pp.010951
- Theiss, C., Bohley, P., Bisswanger, H. and Voigt, J. (2004) Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity. J. Plant Physiol. 161, 3-14 https://doi.org/10.1078/0176-1617-00987
- Theiss, C., Bohley, P. and Voigt, J. (2002) Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 128, 1470-1479 https://doi.org/10.1104/pp.010896
- Thomas, T. and Thomas, T. J. (2001) Polyamine in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol. Life. Sci. 58, 244-258 https://doi.org/10.1007/PL00000852
- Wood, J. M. (1999) Osmosensing by bacteria: signals and membrane-base sensors. Microbiol. Mol. Biol. Rev. 63, 230-262
Cited by
- Recombinant polyamine-binding protein of Synechocystis sp. PCC 6803 specifically binds to and is induced by polyamines vol.76, pp.6, 2011, https://doi.org/10.1134/S0006297911060137
- Short-Term UV-B and UV-C Radiations Preferentially Decrease Spermidine Contents and Arginine Decarboxylase Transcript Levels of Synechocystis sp. PCC 6803 vol.62, pp.2, 2011, https://doi.org/10.1007/s00284-010-9724-0
- Na+-stimulated nitrate uptake with increased activity under osmotic upshift in Synechocystis sp. strain PCC 6803 vol.27, pp.10, 2011, https://doi.org/10.1007/s11274-011-0706-6
- Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacteriumAnabaena vol.3, pp.5, 2014, https://doi.org/10.1002/mbo3.207
- Characterization of the substrate-binding PotD subunit in Synechocystis sp. strain PCC 6803 vol.192, pp.10, 2010, https://doi.org/10.1007/s00203-010-0607-3
- Involvement of Polyamine Binding Protein D (PotD) of Synechocystis sp. PCC 6803 in Spermidine Uptake and Excretion vol.69, pp.4, 2014, https://doi.org/10.1007/s00284-014-0605-9
- Activity assay of membrane transport proteins vol.40, pp.4, 2008, https://doi.org/10.1111/j.1745-7270.2008.00400.x