• Title/Summary/Keyword: Na-mica

Search Result 55, Processing Time 0.02 seconds

Presence of Leucocratic Granites of the Taebaegsan Region and Its Vicinities (태백산지역과 인근에 분포하는 우백질 화강암체의 존재)

  • Yoo, Jang Han;Koh, Sang Mo;Moon, Dong Hyeok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • The Taebaegsan region and its vicinities mainly consist of Precambrian granitic gneisses and Cambrian meta-sedimentary rocks. And lots of leucocratic(alkali) granites smaller than the stocks are found here and there. Therefore the presence of leuco-granites is not properly described yet in the former studies. For the effective distinction of several granitic rocks, outcrop characteristics, mineral identification, and petro-chemical properties were studied. Some part of granitc gneisses could be classified into typical metamorphic rocks such as migmatites and banded gneisses. And some shows rather dark appearance with gray quartz and feldspars, and others two mica granites, leucocratic ones etc. But all of leucocratic granites of the region usually show bright milky white to beige color. Since they mainly consist of quartz, feldspars, muscovite, and small amounts of sericites, amphiboles, tourmaline and lepidolite. And all of alkali granites belong to the calc-alkalic, peraluminous and S-type in character. During magmatic differentiation of leucocratic granites, CaO and total Fe contents are clearly decreased than those of the older granitic rocks. On the other hand, magmatic evolution also had induced the greisenization and albitization which enriched the relative amounts of alkali elements such as $K_2O$ and $Na_2O$.

Characteristics of Pearlescent Pigment using in Make-up Cosmetics (색조화장에 사용되는 진주광택 안료의 특성)

  • Kwak, Han-Ah;Choi, Eun-Young;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • We investigated the morphological characteristics of the pearlescent pigment by using scanning electron microscope, energy dispersive X-ray spectrometry and thermal analyzer. The result is that the shape of pigment is platy polygonal form through observing the pearlescent pigment by the scanning electron microscope. The size of pigment is various and not formed in standardized size or shape. The pigment flakes were measured about from $30{\mu}m$ to $300{\mu}m$. The tip of the piece of pigment is pointed shape or angled. The result of observing them by the scanning electron microscope in magnifying high power is that the edge and the lateral face of them is an round form and the measurement of thickness is about $9{\mu}m$. As well using the high magnification scanning electron microscope, the surface of the pigment flake observed like rugged as coating with the $TiO_2$ element, the diameter of the coating particle is around 60 nm, then the coating particle consists of granular substance. Analysis of the configuration elements of pearlescent pigment using by the energy dispersive X-ray spectrometry is that O, Si, C, Na, Ca, Ti, Zn detected in the surface of pigment and its lateral face identifies similar components. In thermal analysis, there are no contained quantity differences between them in beginning from $100^{\circ}C$ to $800^{\circ}C$ showing thermal analysis, 1.1% out of contained quantity reduced at $115^{\circ}C$, 1.7% dropped at $416^{\circ}C$, and 1.9% decreased at $797^{\circ}C$.

Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area (지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석)

  • Lee Sa-Ro;Oh Hyun-Joo;Min Kyung-Duck
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.129-150
    • /
    • 2006
  • Mineral potential mapping is an important procedure in mineral resource assessment. The purpose of this study is to analyze mineral potential using weight of evidence model and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential mineral in the Gangreung area, Korea. for this, a spatial database considering mineral deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The used mineral deposits were non-metallic(Kaolin, Porcelainstone, Silicastone, Mica, Nephrite, Limestone and Pyrophyllite) deposits of sedimentary type. The factors relating to mineral deposits were the geological data such as lithology and fault structure, geochemical data, including the abundance of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, Zn, $Cl^-,\;F^-,\;{PO_4}^{3-},\;{NO_2}^-,\;{NO_3}^-,\;SO_{42-}$, Eh, PH and conductivity and geophysical data, including the Bouguer and magnetic anomalies. These factors were used with weight of evidence model to analyze mineral potential. Probability models using the weight of evidence were applied to extract the relationship between mineral deposits and related factors, and the ratio were calculated. Then the potential indices were calculated by summation of the likelihood ratio and mineral potential maps were constructed from Geographic Information System (GIS). The mineral potential maps were then verified by comparison with the known mineral deposit areas. The result showed the 85.66% in prediction accuracy.

  • PDF

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea (토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동)

  • 이찬희;이현구;윤경무
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2001
  • Environmental pollution of the Tohyun mine creek area was investigated on the basis of geology, mineralogy and geochemistry. In soils and sediments of the mine area, ${Al_2}{O_3}/{Na_2O}$ and ${K_2}O/{Na_2}O$ ratios are partly negative correlation against ${SiO_2}/{Al_2}{O_3}$, respectively. Geochemical characteristics of some trace and rare earth elements such as V/Ni, Ni/Co, La/Ce, Th/Yb, Th/U, La/Th, ${La_N}/{Yb_N}$, La/Sc and Sc/Th are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. These results suggest that sediments source of the host shale around the mine area could be originated by basic to intermediate igneous rocks. Mineral compositions of soil and sediment near the mine area were partly variable mineralogy, which are composed of quartz, mica, feldspar, chlorite, clay minerals and some pyrite. Soils and sediments with highly concentrated heavy minerals, gravity separated mineralogy, are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various kinds of hydroxide minerals on the polished sections. As normalized by bed rock composition, average enrichment indices of major elements in sediments, precipitates, farmland soils and paddy soils are 1.0, 1.7, 0.9 and 0.8, respectively. Maximum concentration of environmental toxic elements in the mine creek are detected with Ag = 186 ppm, As = 17,100 ppm, Bi = ]27 ppm, Cd = 77 ppm, Cu = 12,299 ppm, Pb = 8,897 ppm, Sb = 1,350 ppm, W = 599 ppm and Zn = 12,250 ppm, which are increasing with total FeO increasing, and extremely high concentrations of surface sediments and precipitates near the waste rock dump. These toxic elements (As, Bi, Cd, Cu, Pb, Sb, W and Zn) of the samples, normalizing by host rock concentration, revealed that average enrichment index is 106.0 for sediments, 279.6 for precipitates, 3.5 for farmland soils and 1.6 for paddy soils. However, on the basis of EPA values, enrichment indices of all the samples are 40.7, 121.4, 1.3 and 0.6, respectively.

  • PDF

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area (횡성지역 다양한 지질환경에서 지하수 중 우라늄 및 라돈-222 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yu Jin;Lee, Yong Cheon;Choi, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.557-576
    • /
    • 2015
  • Groundwaters in granite, gneiss, and two-mica granite formations, including faults, in the Hoengseong area are examined to determine the relationship between their uranium and radon-222 contents and rock types. The chemical compositions of 38 groundwater samples and four surface water samples collected in the study area were analyzed. Sixteen of the samples showing high uranium and radon-222 contents were repeatedly analyzed. Surface radioactivities were measured at 30 points. The uranium and radon-222 concentrations in the groundwater samples were in the ranges of 0.02-49.3 μg/L and 20-906 Bq/L, respectively. Four samples for uranium and 35 samples for radon had concentrations exceeding the alternative maximum contaminant level of the US EPA. The chemical compositions of groundwaters indicated Ca(Na)-HCO3 and Ca(Na)-NO3(HCO3+Cl) types. The pH values ranged from 5.71 to 8.66. High uranium and radon-222 contents in the groundwaters occurred mainly at the boundary between granite and gneiss, and in the granite area. The occurrence of uranium did not show any distinct relationship to that of radon-222. The radon-222, an inert gas, appeared to be dissolved in the groundwater of the aquifer after wide diffusion along rock fractures, having been derived from the decay of uranium in underground rocks. The results in this study indicate that groundwater of neutral or weakly alkaline pH, under oxidizing conditions and with a high bicarbonate content is favorable for the dissolution of uranium and uranium complexes such as uranyl or uranyl-carbonate.

Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea (전라남도 나주시 동강면 일대 황토(풍화잔류토)의 토양학적 및 광물학적 특성 연구)

  • Kim, Yumi;Bae, Jo-Ri;Kim, Cheong-Bin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • The objectives of this study were to characterize the physicochemical properties and mineralogy of Hwangto (yellow residual soils) from the southwestern part of Korea and to understand the soil-forming processes of the residual soils from their parent rocks. Both the yellowish residual soils as well as the unweathered and weathered parent rocks were obtained from Jangdong-ri, Donggang-myun, Naju, Jeollanam-do, Korea. The soil samples were examined to analyze the said soil's physicochemical properties such as color, pH, and particle size distribution. A scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were performed in order to understand the mineralogy, chemical composition, and morphology of the soils. Two thin sections of a parent rock were analyzed to study its mineral composition. A particle size analysis of the soils indicates that the residual soil consists of mainly silt and clay (approximately 95%) and that soil textures are silty clay or silt clay loam. The soil colors of the residual soil are dark brown (7.5YR 3/4) through yellowish red (5YR 4/6). The pH of the residual soil ranges from 4.3 to 5.1. The major minerals of the parent rocks were quartz, biotite, chlorite, and plagioclase. The mineralogy of the sand fraction of the residual soil was quartz, biotite, muscovite and sanidine. The mineralogy of the silt fraction of the residual soil was quartz, biotite, muscovite, Na-feldspar, K-feldspar, and sanidine. The clay mineralogy of the soil was goethite, kaolinite, ilite, hydroxy-interlayed vermiculite(HIV), vermiculite, mica, K-feldspar and quartz. The mineral composition of the residual soil and the parent rock indicates that feldspar and mica in the parent rock weathered into illite, vermiculite and hydroxy-interlayed vermiculite(HIV), and finally changed into kaolinite and halloysite in the yellowish residual soils.

Comparative Studies between Chungju and Seosan Groups (충주층군(忠州層群)과 서산층군(瑞山層群)의 비교연구(比較硏究))

  • Na, Ki Chang;Kim, Hyung Shik;Lee, Dong Jin;Lee, Sang Hun
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.177-188
    • /
    • 1982
  • The Chungju and Seosan Groups have been known usually as Precambrian formations in Korea. But their relative and absolute ages have been controvericial problem in relation with other geologic system such as so-called Ogcheon and Yeoncheon Systems in Korea. This study has mainly focused on the corelation of the Chungju Group with the Seosan Group in their stratigraphy, structure, metamorphism, and iron ore deposits. In the process of study, the auther surveyed and reclassified the Chungju and Seosan Groups and corelated with Gyeonggi and Ogch cheon metamorphic belts and got some new data. The Chungju iron-bearing formations showing transtitional relation with the Gyeonggi Gneiss Complex and the Jangamri Formation consisting mainly of pebble bearing calcarious phyllite, should be seperated from the Gyemyeongsan formation which is mainly composed of metavolcanic rocks. The Jangamri Formation and the coaly phyllite, which can be corelated respectively with the Hwaggangri Formation and Changri Formation in Ogcheon Group, are repeated in the Gyemyeonsan and Munjuri Formations with the overturned anticlinal folding(F1). So the Chungju Group which was defined as an indipendant geologic unit from the Ogcheon Group should be limited only on the Chungju iron Formation. The Seosan Group can be classified stratigraphically such as Seosan Formation consisting of iron-bearing quartzite and mica schist, Daesan Formation overlying unconformably on the Seosan Formation and Gyeonggi Gneiss Complex. Taean Formation overlying unconformably on the Daesan Formation should be seperated from Seosan Group. There are many similarity in the stratigrphy, structure, and metamorphic facies between Chungju and Seosan Groups exept the metavolcanic rocks in the Gyemyeongsan and Munjuri Formations and the pebble bearing calcareous phyllite in the Jangamri Formation. The two Groups were deformed with two kinds of differant stages, the first shows $N30^{\circ}-40^{\circ}E$ trend of fold axis, the second $N70^{\circ}-80^{\circ}W$ respectively. The Seosan Formation, which is the lowest formation in Seosan Group and bearing the iron formation, was metamorphosed at 2500 m. y. before. These age is similar with the metamorphic age of Gyeonggi metamorphic belt and with the age of Algoman and Kenoran Orogenies which devide the Precambrian into Archean and Proterozoic Era. So the Seosan Formation, which is included in some migmatitic rocks of Gyeonggi Gneiss Complex, is the oldest formation in Korea and can be corelated with the Anshan Group which bears the oldest iron formation in China. The metamorphic facies of the Precambrian metamorphism in Seosan area is simillar with that of Chungju area, showing high temperature-low pressure amphibolite facies which is corelated with the Gyeonggi metamorphic belt, the oldest metamorphic belt in Korea ($650^{\circ}-680^{\circ}C$, 3.2-4.4 Kb). The high temperature intermediate pressure amphibolite facies in Seosan area with the low temperature-intermediate presure greenschist facies of Taean formation is corelated with that of Ogcheon Group ($590^{\circ}-640^{\circ}$ C, 5.2-6.3 Kb). The Chungju and Seosan iron formations were deposited in Archean, showing geochemical composition of Precambrian iron formations. The Chungju iron formation was mainly formed by the chemical precipitation, on the other hand, the Seosan iron formation was formed by alternated action of chemical and detrital depositions.

  • PDF