• Title/Summary/Keyword: Na-doped ZnTe

Search Result 3, Processing Time 0.016 seconds

Stability Improvement of CdTe Solar Cells using ZnTe:Na Back Contact (Na 도핑된 ZnTe 후면전극을 이용한 CdTe 태양전지의 안정성 개선에 관한 연구)

  • Cha, Eun Seok;Park, Kyu Charn;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • Cu doping by copper or $Cu_2Te$ materials enhances p+ formation in CdTe near the back contact interface, allowing better formation of ohmic contact. However, the Cu in CdTe junction is also considered as a principal component of CdTe cell degradation. In this paper, Na-doped ZnTe layer was employed as a back contact material to improve the stability of CdTe solar cells. As a process variable, post $CdCl_2$ treatment of CdS/CdTe film was conducted before or after depositing ZnTe:Na on CdTe. The change of the photovoltaic properties of CdTe cells were investigated with aging time. Low-temperature photoluminescence analysis was conducted to describe the degradation mechanism. The result showed that the CdTe solar cells with better stability compare to Cu contact were achieved using an optimized ZnTe:Na back contact.

Dielectric and Piezoelectric Properties of Environmantal Friendly(Li0.04(Na0.56K0.44)0.96(Nb0.9Ta0.10)0.998Zn0.005O3 Ceramics for Energy Harvesting Devices (에너지수확소자용 친환경 (Li0.04(Na0.56K0.44)0.96(Nb0.9Ta0.10)0.998Zn0.005O3 세라믹스의 유전 및 압전 특성)

  • Sin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.355-359
    • /
    • 2013
  • In this paper, the $0.995(Li_{0.04}(Na_{0.56}K_{0.44})_{0.96}(Nb_{0.90}Ta_{0.10})_{0.998}Zn_{0.005}O_3+0.005KNbO_3+xwt%\;TeO_2$ lead-free piezoelectric ceramics for energy harvesting devices were fabricated by the conventional mixed oxide method. The microstructure, dielectric, and piezoelectric properties were investigated as a function of the $TeO_2$ addition. All the specimens showed an orthorhombic phase structure. At the composition ceramics doped with 0.1 wt%$TeO_2$, the optimum values of $d_{33}$= 212 pC/N, $d_{33}{\cdot}g_{33}=9.54pm^2/N$, and kp=0.448 were obtained, respectively. The results indicate that the composition ceramics is a promising candidate for energy harvesting devices applications.

Role of modifiers on the structural, mechanical, optical and radiation protection attributes of Eu3+ incorporated multi constituent glasses

  • Poojha, M.K. Komal;Marimuthu, K.;Teresa, P. Evangelin;Almousa, Nouf;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3841-3848
    • /
    • 2022
  • The effect of modifiers on the optical features and radiation defying ability of the Eu3+ ions doped multi constituent glasses was examined. XRD has established the amorphous nature of the specimen. The presence of various functional/fundamental groups in the present glasses was analyzed through FTIR spectra. The physical, structural and elastic traits of the glasses were explored. The variation in the structural compactness of the glass structure according to the incorporated modifier was enlightened to describe their suitability for a better shielding media. For the examined glasses, the metallization criterion value varied in the range 0.613-0.692, indicating the non-metallic character of the glasses with possible nonlinear optical applications. The computed elastic moduli expose the Li-containing glass (BTLi:Eu) to be tightly packed and rigid, which is a requirement for a better shielding channel. Furthermore, the optical bandgap and the Urbach energy values are calculated based on the optical absorption spectra. The evaluated bonding parameters revealed the nature of the fabricated glasses covalent. In addition, we investigated the radiation attenuation attributes of the prepared Eu3+ ions doped multi constituent glasses using Phy-X software. We determined the linear attenuation coefficient (LAC) and reported the influence of the five oxides Li2O3, CaO, BaO, SrO, and ZnO on the LAC values. The LAC varied between 0.433 and 0.549 cm-1 at 0.284 MeV. The 39B2O3-25TeO2-15Li2O3-10Na2O-10K2O-1Eu2O3 glass has a much smaller LAC than the other glasses.