DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of Environmantal Friendly(Li0.04(Na0.56K0.44)0.96(Nb0.9Ta0.10)0.998Zn0.005O3 Ceramics for Energy Harvesting Devices

에너지수확소자용 친환경 (Li0.04(Na0.56K0.44)0.96(Nb0.9Ta0.10)0.998Zn0.005O3 세라믹스의 유전 및 압전 특성

  • Sin, Sang-Hoon (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • Received : 2013.04.08
  • Accepted : 2013.04.23
  • Published : 2013.05.01

Abstract

In this paper, the $0.995(Li_{0.04}(Na_{0.56}K_{0.44})_{0.96}(Nb_{0.90}Ta_{0.10})_{0.998}Zn_{0.005}O_3+0.005KNbO_3+xwt%\;TeO_2$ lead-free piezoelectric ceramics for energy harvesting devices were fabricated by the conventional mixed oxide method. The microstructure, dielectric, and piezoelectric properties were investigated as a function of the $TeO_2$ addition. All the specimens showed an orthorhombic phase structure. At the composition ceramics doped with 0.1 wt%$TeO_2$, the optimum values of $d_{33}$= 212 pC/N, $d_{33}{\cdot}g_{33}=9.54pm^2/N$, and kp=0.448 were obtained, respectively. The results indicate that the composition ceramics is a promising candidate for energy harvesting devices applications.

Keywords

References

  1. Goldfarb, Michael, Jones, and L. Da, J. Dyn. Syst. Meas. Control., 121, 566 (1999). https://doi.org/10.1115/1.2802517
  2. K. Ming-Chang, C. Chien-Min, C. Kai-Huang, and L. Chun-Cheng, Jpn. J. Appl. Phys., 51. 035801 (2012). https://doi.org/10.1143/JJAP.51.035801
  3. J. Min-Hong, D. Man-Jiao, Y. Zhu-Pei, and F. Zhen-Xiao, Trans Nonterrous Met. Soc. China, 22. s133 (2012). https://doi.org/10.1016/S1003-6326(12)61697-5
  4. C. Zhi-Wu and H. Jian-Qiang, Trans Nonterrous Met. Soc. China, 18, 623 (2008). https://doi.org/10.1016/S1003-6326(08)60108-9
  5. G. Leveque, P. Marchet, F. Levessort, L. P. Tran-Huu-Hue, and J. R. Duclere, J. Eur. Cetam. Soc., 31, 577 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.10.031
  6. K. Chandramani Singh, C. Jiten, R. Laishram, O. P. Thakur, and D. K.Bhattacharya, J. Alloy Com., 496, 717 (2010). https://doi.org/10.1016/j.jallcom.2010.02.181
  7. Z. Feng and S. Wing Or, J. Alloy Com., 480, L5 (2009). https://doi.org/10.1016/j.jallcom.2009.01.111
  8. Y. Saito, H. Takkao, T. Tani,T. Nonoyama, K. Takatori,T. Homma,T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  9. Y. Wenlong, Z. Zhongxiang, Y. Bin, J. Yongyuan, L. Huan, and P. Yanbo, Mater. Lett., 70, 146 (2012). https://doi.org/10.1016/j.matlet.2011.12.014
  10. J. D. S. Guerra, C. R. Hathenher, S. A. Lourenco, and N. O. Dantas, J. Non. Cryst., 356, 2350 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.067
  11. Y. K. Oh, J. R. Noh, J. H. Yoo, J. H. Kang, J. H. Hwang, L. H. Hong, and J. I. Hong, IEEE, 58, 9 (2011).