• Title/Summary/Keyword: Na-K pump

Search Result 147, Processing Time 0.026 seconds

Implementation of Charge-Pump Active-Matrix OLED Panel with $64\;{\times}\;64$ Pixels Using $ITO/SiO_2/ITO$ Capacitors and a-Si:H Schottky Diodes

  • Na, Se-Hwan;Seo, Jong-Wook;Kwak, Mi-Young;Shim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1267-1270
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel with $64\;{\times}\;64$ pixels utilizing the charge-pump (CP) pixel addressing method was fabricated using conventional thin-film processes. Each pixel consists of a-Si:H Schottky diode and $ITO/SiO_2/ITO$ capacitor. It is shown that CP-OLED is technically feasible for information display and a driving voltage below $4V_{pp}$ is enough for nominal operation.

  • PDF

Studies on Active Center of $(Na^{+}+K^{+})-ATPase$ in Rabbit Red Cell Membranes (토끼 적혈구막의 $(Na^{+}+K^{+})-ATPase$의 active center에 관한 연구)

  • Lim, Bo-Sang
    • The Korean Journal of Physiology
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1975
  • The present experiments were carried out to investigate the active center of sodium and potassium ion activated adenosine triphosphatase. An ATPase, activated by sodium ion Plus potassium ion in the presence of magnesium ion, and inhibited by ouabain, has been obtained from rabbit red cell ghosts. The ATPase activity was measured by inorganie phosphate released from ATP. From this values of the measured inorganic phosphate, the activity of ATPase was calculated. The following results were observed. 1. The activity of $(Na^++K^+)-ATPase$ is inhibited by ouabain. This effect may not be due to an effect on sulfhydryl groups, amino groups, carboxyl groups, imidazole groups and hydroxyl groups. 2. The $(Na^++K^+)$-activated enzyme system is inhibited by p-chloromercuribenzoate and by d nitroflurobenzene, and this effect may be due to an effect on sulfhydryl groups. These results indicate that the sulfhydryl groups is attached to sodium-potassium dependent adenosine triphosphate, an aspect of the pump. 3. The $(Na^++K^+)-activated$ enzyme system is inhibited by maleic anhydride and this inhibition is reversed by lysine. This Seems to indicate that the active center of this enzyme is the amino groups. 4. The $(Na^++K^+)$-activated enzyme system is inhibited by iodoacetamide and this inhibition is reversed by the simultaneous present of cysteine and aspartic acid in the suspension medium. This result indicates that this enzyme contains sulfhydryl groups and carboxyl groups. 5. The $(Na^++K^+)-ATPase$ activity is accelerated by adrenaline and this effect is abolished by aspartic acid. This effect of aspartic acid indicate that carboxyl group might be involved in the hydrolysis of ATP by the enzyme system. On the hydrolysis of ATP by the enzyme system. On the basis of these experiments it f·as suggested that the active center of $(Na^++K^+)-activated$ ATPase contains sulfhydryl groups, amino groups and carboxyl groups.

  • PDF

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF

Preparation and Characterization of Porous Polycaprolactone Membrane for Tissue Engineering (조직공학용 다공성 Polycaprolactone 멤브레인의 제조 및 특성)

  • Kim, Jin-Tae;Kim, Tae-Hyung;Choi, Jae Ha
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Polycaprolactone (PCL) has been fabricated into the membrane type scaffolds of 3 dimensional pore network for the tissue engineering applications by the blade method of salt (NaCl) leaching and solution casting. In this study, the experimental designs have each conditions of drying temperature, salt particle size, salt content. The modified dispensing pump connected up to homogenizing mixer system is used for mixing the $PCL/CHCl_3$ solution and NaCl particles. The membrane fabricated use by the film applicator to poured mixed solution on the glass plate. The great pore by NaCl particles and the small pore by the evaporated $CHCl_3$ in the frame wall of great pores are multiply formed in membrane scaffolds.

Respiratory Chain-Linked Components of the Marine Bacterium Vibrio alginolyticus Affect Each Other

  • Kim, Young-Jae
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.125-128
    • /
    • 2002
  • The aerobic respiratory chain of Vibrio alginolyticus possesses two different kinds of NADH oxidase systems, i.e., an $Na^{+}$-dependent NADH oxidase system and an $Na^{+}$-independent NADH oxidase system. When deamino-NADH, which is the only substrate for the $Na^{+}$-dependent NADH oxidase system, was used as a substrate, the maximum activities of $N^{+}$-dependent NADH: quinone oxidoreductase and $Na^{+}$-dependent NADH oxidase were obtained at about 0.06 M and 0.2 M NaCl, respectively. When NADH, which is a substrate for both $Na^{+}$-dependent and $Na^{+}$-independent NADH oxidase systems was used as a substrate, the NADH oxidase activity had a pH optimum at about 8.0. In cGntrastl when deamino-NADH was used as a substrate, the NADH oxidase activity had a pH optimum at about 9.0. On the other handle inside-out membrane vesicles prepared from the wild-type bacterium generated only a very small $\Delta$pH by the NADH oxidase system, whereas inside-out membrane vesicles prepared from Napl, which is a mutant defective in the $Na^{+}$ pump, generated $\Delta$pH to a considerable extent by the NADH oxidase system. On the basis of the results\ulcorner it was concluded that the respiratory chain-linked components of V. atginotyticus affect each other.

Effects of Histamine Pretreatment on the subsequent Noradrenaline-induced Contraction and $K^+-Contracture$ in Rabbit Renal Artery (가토 신동맥의 고농도 Histamine에 의한 노아드레날린 유발 수축 및 K-경축 약화 기전)

  • Lee, Sung-Woo;Kim, Se-Hoon;Chang, Seok-Jong;Park, Hae-Kun
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.351-361
    • /
    • 1989
  • The contraction of renal arterial strip by no.epineph.me (NE) or 40 mM $K^+$ were Significantly attenuated after histamine $(10^{-5}\;M)-induced$ contraction. The mechanisms of this phenomenon were investigated in the helical strips of isolated renal artery with the measurement of isometric tension. The arterial strip was immersed in the tris-buffered Tyrode's solution which was equilibrated with 100% $O_2\;at\;35^{\circ}C$. The contraction was induced by NE or 40 mM $K^+$ during the recovery from the histamine-induced contraction which lasted for 15 minutes. The contraction by NE was also attenuated in the $Ca^{2+}-free$ Tyrode's solution and the increase of contraction by addition of 2 mM $Ca^{2+}$ was attenuated as well. This attenuation phenomenon was not observed in the presence of low concentration $(3{\times}10^{-7}\;M)$ of histamine. This attenuation was not affected by destruction of endothelium, pretreatment with papaverine or propranolol. This attenuation was partially inhibited by pretreatment of ouabain or in low $K^+(0.5 mM)$ Tyrode's solution. But the attenuation in the $Ca^{2+}-free$ Tyrode's solution was not inhibited. Furthermore this attenuation was completely blocked by pretreatment of djphenhydramine $(H_1-receptor blocker)$ and potentiated by pretreatment of cimetidine $(H_2-receptor\;blocker)$. This attenuation Phenomenon was disappeared after recovery of 1 hour. From the above results, it is suggested that the attenuation phenomenon may be resulted partially from the activation of $Na^+-K^+$ exchange pump and partially from the depletion of intracellular $Ca^{2+}$ pool after the histamine-induced contraction mediated through $H_1-receptor$ function.

  • PDF

Effects of Ouabain and Vanadate on K-pNPPase Activity in Rabbit Renal Cortical Slices (가토 신피질 절편에서의 K-pNPPase활성에 대한 Ouabain 및 Vanadate의 영향)

  • Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.203-213
    • /
    • 1985
  • This study was carried out to investigate whether the K-pNPPase activity in renal cortical slices can be used as an index for measuring the activity of $Na^+-K^+$ exchange pump. The K-pNPPase activity, Ouabain-sensitive oxygen consumption add intracellular electrolytes content in slices, and Na-K-ATPase activity in microsome were measured and the effects of ouabain and vanadate on these were observed. The results are as follows : 1) p-NPPase activity in slices increased linearly with incubation time during 60 minutes, and $K^+$-dependent, ouabain-sensitive fraction was about 55% of total p-NPPase activity. This value was almost the same through out the incubation time. 2) The concentrations of ouabain and vanadate for 50f inhibition of K-pNPPase activity were$7.0{\times}10^{-6}M$ and $1.3{\times}10^{-5}M$, respectively. 3) The ouabain-sensitive oxygen consumption in slices was reduced to 50% of control value by $6.3{\times}10^{-6}M$ ouabain or $2.5{\times}10^{-5}M$ vanadate. These concentrations were similar to those for 50% inhibition of K-pNPPase activity. 4) The trends of intracellular electrolytes change by ouabain and vanadate were similar to those of the change in K-pNPPase activity. 5) The Na-K-ATPase activity in microsome prepared from renal cortex was completely inhibited by $10^{-3}M$ ouabain or $10^{-3}M$ vanadate and the concentration for 50% inhibition was $1.2{\times}10^{-6}M$ in ouabain and $1.6{\times}10^{-6}M$ in vanadate, which were much lower than those for K-pNPPase activity or ouabain-sensitive oxygen consumption in slices. These results indicate that K-pNPPase activity measured in renal cortical slices is a better index for evaluating $Na^+-K^+$ exchange pump activity than Na-K-ATPase activity measured in microsome.

  • PDF

Effects of SITS on Sodium Transport, Oxygen Consumption and Na-K-ATPase of the Frog Skin (개구리 피부의 Sodium 이동, 산소 소모량 및 Na-K-ATPase에 대한 SITS의 영향)

  • Lee, Seung-Mook;An, Mi-Ra;Lee, Syng-Ill;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 1983
  • Effects of SITS (4-acetamido-4'-isothiocyano-2, 2'-disulfonic stilbene) on a $Na^+$ transport, tissue oxygen consumption and Na-K-ATPase activity were studied in isolated frog skin preparations. $Na^+$ transport was estimated by measuring the short-circuit current(SC) across the skin; oxygen consumption was measured in separated epidermis as well as in intact skin; and Na-K-ATPase was assayed in $24,000{\times}g$ fraction of epidermal homogenates. The SCC across the skin Was rapidly and substantially reduced in the presence of 10 mM SITS in the medium bathing the outside(mucosal) surface of the skin. When the drug was added to the inside(serosal) bathing medium, there was about 20 min delay for inhibition of SCC and the effect was less pronounced. The above effect of SITS was independent of the presence of $Cl^-$ in the bathing medium. The oxygen consumption of the skin tissue was not affected by SITS, but the Na-K-ATPase activity of a subcellular fraction of the skin was significantly inhibited. These results suggest that SITS retards $Na^+$ transport across the frog skin primarily by interfering $Na^+$ entry across the mucosal membrance of the epithelial cell, although an effect on $Na^+$ pump can not be ruled out completely.

  • PDF

$[^3H]$ Ouabain Binding and Effect of Ouabain on $^{45}Ca^{2+}$-Uptake in Rat Cardiac Myocytes (쥐 심근 세포의 $[^3H]$ Ouabain 결합과 $^{45}Ca^{2+}}$섭취에 미치는 Ouabain의 영향)

  • 이신웅;김영희;진갑덕
    • YAKHAK HOEJI
    • /
    • v.28 no.3
    • /
    • pp.129-138
    • /
    • 1984
  • Specific [$^{3}H$] ouabain binding and $Ca^{2+}$ -uptake were measured to elucidate the role of high affinity [$^{3}H$] ouabain binding site in rat cardiac myocytes which contain 65% of rod cells. High affinity [$^{3}$H] ouabain binding site, which is about 3% of total pump sites, with apparent dissociation constant ($K_{D}$) of $1.1{\times}10^{-7}M$ and maximum binding site concentration (Bmax) of 1.2 pmol/mg protein ($1.754{\times}10^{5}cells$) were identified. At the concentration of $10^{-7}M$ to $10^{-4}M$, ouabain produced concentration dependent increase in $Ca^{2+}$-uptake of myocytes. The effect of ouabain on $Ca^{2+}$-uptake was not effected by membrane depolarization (elevated K+ in incubation medium) or verapamil. These results suggest that in rat ventricular myocytes the ouabain receptor complex to high affinity site may increase Na+ - $Ca^{2+}$ exchange across the sarcolemmal membrane by inhibition of Na+, K+ - ATPase.

  • PDF