• Title/Summary/Keyword: NWS

Search Result 158, Processing Time 0.026 seconds

Formation and Photoluminescence of Silicon Oxide Nanowires by Thermal Treatment of Nickel Nanoparticles Deposited on the Silicon Wafer

  • Jang, Seon-Hui;Lee, Yeong-Il;Kim, Dong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.27.1-27.1
    • /
    • 2011
  • The recent extensive research of one-dimensional (1D) nanostructures such as nanowires (NWs) and nanotubes (NTs) has been the driving force to fabricate new kinds of nanoscale devices in electronics, optics and bioengineering. We attempt to produce silicon oxide nanowires (SiOxNWs) in a simple way without complicate deposition process, gaseous Si containing precursors, or starting material of $SiO_2$. Nickel (Ni) nanoparticles (NPs) were applied on Si wafer and thermally treated in a furnace. The temperature in the furnace was kept in the ranges between 900 and $1,100^{\circ}C$ and a mixture of nitrogen ($N_2$) and hydrogen ($H_2$) flowed through the furnace. The SiOxNWs had widths ranging from 100 to 200 nm with length extending up to ~10 ${\mu}m$ and their structure was amorphous. Ni NPs were acted as catalysts. Since there were no other Si materials introduced into the furnace, the Si wafer was the only Si sources for the growth of SiOxNWs. When the Si wafer with deposition of Ni NPs was heated, the liquid Ni-Si alloy droplets were formed. The droplets as the nucleation sites induce an initiation of the growth of SiOxNWs and absorb oxygen easily. As the droplets became supersaturated, the SiOxNWs were grown, by the reaction between Si and O and continuously dissolving Si and O onto NPs. Photoluminescence (PL) showed that blue emission spectrum was centered at the wavelength of 450 nm (2.76 eV). The details of growth mechanism of SiOxNWs and the effect of Ni NPs on the formation of SiOxNWs will be presented.

  • PDF

Structural and Optical Properties of GaN Nanowires Formed on Si(111)

  • Han, Sangmoon;Choi, Ilgyu;Song, Jihoon;Lee, Cheul-Ro;Cho, Il-Wook;Ryu, Mee-Yi;Kim, Jin Soo
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.95-99
    • /
    • 2018
  • We discuss the structural and optical characteristics of GaN nanowires (NWs) grown on Si(111) substrates by a plasma-assisted molecular-beam epitaxy. The GaN NWs with high crystal quality were formed by adopting a new growth approach, so called Ga pre-deposition (GaPD) method. In the GaPD, only Ga was supplied without nitrogen flux on a SiN/Si surface, resulting in the formation of Ga droplets. The Ga droplets were used as initial nucleation sites for the growth of GaN NWs. The GaN NWs with the average heights of 60.10 to 214.62 nm obtained by increasing growth time. The hexagonal-shaped top surfaces and facets were observed from the field-emission electron microscope images of GaN NWs, indicating that the NWs have the wurtzite (WZ) crystal structure. Strong peaks of GaN (0002) corresponding to WZ structures were also observed from double crystal x-ray diffraction rocking curves of the NW samples. At room temperature, free-exciton emissions were observed from GaN NWs with narrow linewidth broadenings, indicating to the formation of high-quality NWs.

Large-Scale Assembly of Aligned Graphene Nanoribbons with Sub 30-nm Width

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.524-527
    • /
    • 2014
  • We report a simple yet efficient method to assemble large-scale aligned graphene nanoribbons (GNRs) with a width as small as 30 nm. The $V_2O_5$ nanowires (NWs) were aligned on a graphene surface via spraying a solution of the $V_2O_5$ NWs, and the graphene was selectively etched by the reactive ion etching method using the $V_2O_5$ NWs as a shadow mask. This process allowed us to prepare large scale patterns of the aligned GNRs on a $SiO_2$ substrate. The orientation of the aligned and randomly oriented GNRs was compared by the atomic force microscope (AFM) images. We achieved the highly aligned GNRs along the flow direction of the $V_2O_5$ NWs solution. Furthermore, we successfully fabricated a field effect-transistor with the aligned GNRs and measured its electrical properties. Since our method enable to prepare the aligned GNRs over a large area, it should open up new way for the various applications.

Properties of Cement Mortar with Manganese Doped Titanium Dioxide Nano-Wires (망간 도핑 이산화티탄 나노와이어를 혼입한 시멘트 모르타르의 특성)

  • Lee, Jun-Cheol;Hou, Yao-Long
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.323-324
    • /
    • 2023
  • The properties of cement mortar mixed with manganese-doped titanium dioxide nanowires (TiO2(Mn)-NWs) were investigated in this study. The TiO2(Mn)-NWs were synthesized using solvo-thermal synthesis and electro-spinning techniques. The TiO2(Mn)-NWs at weights of 1%, 2%, and 3% of the cement were respectively mixed into the cement mortar. The results showed that as the amount of TiO2(Mn)-NWs increased, the flow value of the cement mortar was decreased and the setting time of cement mortar was accelerated. Moreover, as the amount of TiO2(Mn)-NWs increased, the compressive strength of cement mortar was increased and the efficiency of acetaldehyde removal was improved.

  • PDF

Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns

  • Hong, Juree;Lee, Seulah;Lee, Sanggeun;Seo, Jungmok;Lee, Taeyoon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.509-514
    • /
    • 2014
  • We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.

A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape (광경화 점착 테이프를 이용한 은 나노와이어 기반 투명전극 패터닝 공법)

  • Ju, Yun Hee;Shin, Yoo Bin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.73-76
    • /
    • 2020
  • Silver nanowires (AgNWs) intrinsically possess high conductivity, ductility, and network structure percolated in a low density, which have led to many advanced applications of transparent and flexible electronics. Most of these applications require patterning of AgNWs, for which photolithographic and printing-based techniques have been widely used. However, several drawbacks such as high cost and complexity of the process disturb its practical application with patterning AgNWs. Herein, we propose a novel method for the patterning of AgNWs by employing UV-curable adhesive tape with a structure of liner/adhesive layer/polyolefin (PO) film and UV irradiation to simplify the process. First, the UV-curable adhesive tape was attached to AgNWs/polyurethane (PU), and then selectively exposed to UV irradiation by using a photomask. Subsequently, the UV-curable adhesive tape was peeled off and consequently AgNWs were patterned on PU substrate. This facile method is expected to be applicable to the fabrication of a variety of low-cost, shape-deformable transparent and wearable devices.

Synthesis of vertically aligned silicon nanowires with tunable irregular shapes using nanosphere lithography

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • Silicon nanowires (SiNWs), due to their unusual quantum-confinement effects that lead to superior electrical and optical properties compared to those of the bulk silicon, have been widely researched as a potential building block in a variety of novel electronic devices. The conventional means for the synthesis of SiNWs has been the vapor-liquid-solid method using chemical vapor deposition; however, this method is time consuming, environmentally unfriendly, and do not support vertical growth. As an alternate, the electroless etching method has been proposed, which uses metal catalysts contained in aqueous hydrofluoric acids (HF) for vertically etching the bulk silicon substrate. This new method can support large-area growth in a short time, and vertically aligned SiNWs with high aspect ratio can be readily synthesized with excellent reproducibility. Nonetheless, there still are rooms for improvement such as the poor surface characteristics that lead to degradation in electrical performance, and non-uniformity of the diameter and shapes of the synthesized SiNWs. Here, we report a facile method of SiNWs synthesis having uniform sizes, diameters, and shapes, which may be other than just cylindrical shapes using a modified nanosphere lithography technique. The diameters of the polystyrene nanospheres can be adjustable through varying the time of O2 plasma treatment, which serve as a mask template for metal deposition on a silicon substrate. After the removal of the nanospheres, SiNWs having the exact same shape as the mask are synthesized using wet etching technique in a solution of HF, hydrogen peroxide, and deionized water. Different electrical and optical characteristics were obtained according to the shapes and sizes of the SiNWs, which implies that they can serve specific purposes according to their types.

  • PDF

Effects of Nursing Workplace Spirituality on Job Satisfaction, Burnout and Turnover Intention among General Hospital Nurses (간호일터영성이 병원간호사의 직무만족, 소진 및 이직의도에 미치는 영향)

  • Jin, Ju Hyun;Ju, Hyeon Ok;Kim, Kyoung Soo;Park, Youn Mi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.23 no.2
    • /
    • pp.142-150
    • /
    • 2017
  • Purpose: Nursing workplace spirituality (NWS) has received attention as a new and meaningful subject for nursing to consider, but little is known about the relation of NWS to nursing. The purpose of this study was to identify the effect of NWS on job satisfaction, burnout and turnover intention. Methods: Participants were 145 clinical nurses, who had worked for over 6 months in one of four general hospitals in B city. Data were collected using self-reported questionnaires and analyzed using descriptive statistics, independent t-test, ANOVA, Pearson coefficient and hierarchical multiple regression. Results: In the second hierarchy controlling general characteristics, significant predictors of job satisfaction were burnout and NWS, which explained 45.0% of the variance. NWS had more influence on job satisfaction than burn out, and the model was suitable. NWS showed no statistically significant effect on burnout and turnover intention, when general characteristics and job related factors were controlled. Conclusion: Findings indicate that nursing workplace spirituality has a positive influence on job satisfaction, but no direct influence on burnout or turnover intention, which may indicate an indirect influence. Nurse managers need to develop the NWS enhancement program and provide them to nurse to improve job satisfaction.

Underwater Stability of Surface Chemistry Modified Superhydrophobic WOx Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.357.1-357.1
    • /
    • 2014
  • Superhydrophobic WOx nanowire (NW) arrays were fabricated using a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting WOx NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic WOx NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of WOx NWs arrays was conducted by changing hydrostatic pressure and surface energy of WOx NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of WOx NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

Underwater Stability of Surface Chemically Modified Superhydrophobic W18O49 Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.601-601
    • /
    • 2013
  • Superhydrophobic W18O49 nanowire (NW) arrays were synthesizedusing a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting W18O49 NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic W18O49 NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of W18O49 NWs arrays was conducted by changing hydrostatic pressure and surface energy of W18O49 NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of W18O49 NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF