• Title/Summary/Keyword: NVM(Nonvolatile Memory)

Search Result 18, Processing Time 0.03 seconds

Cache Simulator Design for Optimizing Write Operations of Nonvolatile Memory Based Caches (비휘발성 메모리 기반 캐시의 쓰기 작업 최적화를 위한 캐시 시뮬레이터 설계)

  • Joo, Yongsoo;Kim, Myeung-Heo;Han, In-Kyu;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Nonvolatile memory (NVM) is being considered as an alternative of traditional memory devices such as SRAM and DRAM, which suffer from various limitations due to the technology scaling of modern integrated circuits. Although NVMs have advantages including nonvolatility, low leakage current, and high density, their inferior write performance in terms of energy and endurance becomes a major challenge to the successful design of NVM-based memory systems. In order to overcome the aforementioned drawback of the NVM, extensive research is required to develop energy- and endurance-aware optimization techniques for NVM-based memory systems. However, researchers have experienced difficulty in finding a suitable simulation tool to prototype and evaluate new NVM optimization schemes because existing simulation tools do not consider the feature of NVM devices. In this article, we introduce a NVM-based cache simulator to support rapid prototyping and evaluation of NVM-based caches, as well as energy- and endurance-aware NVM cache optimization schemes. We demonstrate that the proposed NVM cache simulator can easily prototype PRAM cache and PRAM+STT-RAM hybrid cache as well as evaluate various write traffic reduction schemes and wear leveling schemes.

Nonvolatile memory devices with oxide-nitride-oxynitride stack structure for system on panel of mobile flat panel display

  • Jung, Sung-Wook;Choi, Byeong-Deog;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.911-913
    • /
    • 2008
  • In this work, nonvolatile memory (NVM) devices for system on panel of flat panel display (FPD) were fabricated using low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology with an oxide-nitride-oxynitride (ONOn) stack structure on glass. The results demonstrate that the NVM devices fabricated using the ONOn stack structure on glass have suitable switching characteristics for data storage with a low operating voltage, a threshold voltage window of more than 1.8 V between the programming and erasing (P/E) states after 10 years and its initial threshold voltage window (${\Delta}V_{TH}$) after $10^5$ P/E cycles.

  • PDF

Characterizing Memory References for Smartphone Applications and Its Implications

  • Lee, Soyoon;Bahn, Hyokyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.223-231
    • /
    • 2015
  • As smartphones support a variety of applications and their memory demand keeps increasing, the design of an efficient memory management policy is becoming increasingly important. Meanwhile, as nonvolatile memory (NVM) technologies such as PCM and STT-MRAM have emerged as new memory media of smartphones, characterizing memory references for NVM-based smartphone memory systems is needed. For the deep understanding of memory access features in smartphones, this paper performs comprehensive analysis of memory references for various smartphone applications. We first analyze the temporal locality and frequency of memory reference behaviors to quantify the effects of the two properties with respect to the re-reference likelihood of pages. We also analyze the skewed popularity of memory references and model it as a Zipf-like distribution. We expect that the result of this study will be a good guidance to design an efficient memory management policy for future smartphones.

Analysis on the Characteristics of NVM Device using ELA on Glass Substrate (ELA 기판을 사용한 NVM 소자의 전기적 특성 분석)

  • Oh, Chang-Gun;Lee, Jeoung-In;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.149-150
    • /
    • 2007
  • ONO(Oxide-Nitride-Oxide)구조는 기억소자의 전하보유 능력을 향상시키기 위해 도입된 게이트 절연막이다. 본 연구에서는 ELA(Excimer Laser Annealing)방법으로 비정질 실리콘을 결정화 시켜서 그 위에 NVM(Nonvolatile Memory)소자를 만들어 전기적 특성을 측정하여 결과를 나타내었다. 실험 결과 같은 크기의 $V_D$에서 $V_G$를 조절함으로써 $I_D$의 크기를 조절할 수 있었다. $V_G-I_D$ Graph에서는 $I_{on}$$I_{off}$, 그리고 Threshold Voltage를 알 수 있었다. $I_{on}/I_{off}$ Ratio는 $10^3-10^4$이다. $V_G-I_D$ Graph에서는 게이트에 인가하는 Bias의 양을 통해서 Threshold Voltage의 크기를 조절할 수 있었다. 이는 Trap되는 Charge의 양을 임의로 조절할 수 있다는 것을 의미하며, 이러한 Programming과 Erasing의 특성을 이용하여 기억소자로서의 역할을 수행하게 된다.

  • PDF

Electrical characteristics of poly-Si NVM by using the MIC as the active layer

  • Cho, Jae-Hyun;Nguyen, Thanh Nga;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.151-151
    • /
    • 2010
  • In this paper, the electrically properties of nonvolatile memory (NVM) using multi-stacks gate insulators of oxide-nitride-oxynitride (ONOn) and active layer of the low temperature polycrystalline silicon (LTPS) were investigated. From hydrogenated amorphous silicon (a-Si:H), the LTPS thin films with high crystalline fraction of 96% and low surface's roughness of 1.28 nm were fabricated by the metal induced crystallization (MIC) with annealing conditions of $650^{\circ}C$ for 5 hours on glass substrates. The LTPS thin film transistor (TFT) or the NVM obtains a field effect mobility of ($\mu_{FE}$) $10\;cm^2/V{\cdot}s$, threshold voltage ($V_{TH}$) of -3.5V. The results demonstrated that the NVM has a memory window of 1.6 V with a programming and erasing (P/E) voltage of -14 V and 14 V in 1 ms. Moreover, retention properties of the memory was determined exceed 80% after 10 years. Therefore, the LTPS fabricated by the MIC became a potential material for NVM application which employed for the system integration of the panel display.

  • PDF

Influence of Electron and Hole Distribution on 2T SONOS Embedded NVM

  • Choi, Woo Young;Kim, Da Som;Lee, Tae Ho;Kwon, Young Jun;Park, Sung-Kun;Yoon, Gyuhan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.624-629
    • /
    • 2016
  • The influence of electron and hole (EH) distribution on two-transistor (2T) silicon-oxide-nitride-oxide-silicon (SONOS) embedded nonvolatile memory (eNVM) is investigated in terms of reliability. As PE (program/erase) cycles are repeated, it is observed that the electron distribution in the nitride layer becomes wider. It leads to the EH distribution mismatch, which degrades the reliability of 2T SONOS eNVM.

Characteristics of MINOS Structure using $TiO_2$ as Blocking Layer for Nonvolatile Memory applicable to OLED

  • Lee, Kwang-Soo;Jung, Sung-Wook;Kim, Kyung-Hae;Jang, Kyung-Soo;Hwang, Sung-Hyun;Lee, Jeoung-In;Park, Hyung-Jun;Kim, Jae-Hong;Son, Hyuk-Joo;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1284-1287
    • /
    • 2007
  • Titanium dioxide ($TiO_2$) is promising candidate for fabricating blocking layer of gate dielectrics in non-volatile memory (NVM). In this work, we investigated $TiO_2$ as high dielectric constant material instead of silicon dioxide ($SiO_2$), which is generally used as blocking layer for NVM.

  • PDF

Charge trapping characteristics of high-k $HfO_2$ layer for tunnel barrier engineered nonvolatile memory application (엔지니어드 터널베리어 메모리 적용을 위한 $HfO_2$ 층의 전하 트랩핑 특성)

  • You, Hee-Wook;Kim, Min-Soo;Park, Goon-Ho;Oh, Se-Man;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.133-133
    • /
    • 2009
  • It is desirable to choose a high-k material having a large band offset with the tunneling oxide and a deep trapping level for use as the charge trapping layer to achieve high PIE (Programming/erasing) speeds and good reliability, respectively. In this paper, charge trapping and tunneling characteristics of high-k hafnium oxide ($HfO_2$) layer with various thicknesses were investigated for applications of tunnel barrier engineered nonvolatile memory. A critical thickness of $HfO_2$ layer for suppressing the charge trapping and enhancing the tunneling sensitivity of tunnel barrier were developed. Also, the charge trap centroid and charge trap density were extracted by constant current stress (CCS) method. As a result, the optimization of $HfO_2$ thickness considerably improved the performances of non-volatile memory(NVM).

  • PDF

Electrical characteristics of SiC thin film charge trap memory with barrier engineered tunnel layer

  • Han, Dong-Seok;Lee, Dong-Uk;Lee, Hyo-Jun;Kim, Eun-Kyu;You, Hee-Wook;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.255-255
    • /
    • 2010
  • Recently, nonvolatile memories (NVM) of various types have been researched to improve the electrical performance such as program/erase voltages, speed and retention times. Also, the charge trap memory is a strong candidate to realize the ultra dense 20-nm scale NVM. Furthermore, the high charge efficiency and the thermal stability of SiC nanocrystals NVM with single $SiO_2$ tunnel barrier have been reported. [1-2] In this study, the SiC charge trap NVM was fabricated and electrical properties were characterized. The 100-nm thick Poly-Si layer was deposited to confined source/drain region by using low-pressure chemical vapor deposition (LP-CVD). After etching and lithography process for fabricate the gate region, the $Si_3N_4/SiO_2/Si_3N_4$ (NON) and $SiO_2/Si_3N_4/SiO_2$ (ONO) barrier engineered tunnel layer were deposited by using LP-CVD. The equivalent oxide thickness of NON and ONO tunnel layer are 5.2 nm and 5.6 nm, respectively. By using ultra-high vacuum magnetron sputtering with base pressure 3x10-10 Torr, the 2-nm SiC and 20-nm $SiO_2$ were successively deposited on ONO and NON tunnel layers. Finally, after deposited 200-nm thick Al layer, the source, drain and gate areas were defined by using reactive-ion etching and photolithography. The lengths of squire gate are $2\;{\mu}m$, $5\;{\mu}m$ and $10\;{\mu}m$. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer, E4980A LCR capacitor meter and an Agilent 81104A pulse pattern generator system. The electrical characteristics such as the memory effect, program/erase speeds, operation voltages, and retention time of SiC charge trap memory device with barrier engineered tunnel layer will be discussed.

  • PDF

NVM-based Write Amplification Reduction to Avoid Performance Fluctuation of Flash Storage (플래시 스토리지의 성능 지연 방지를 위한 비휘발성램 기반 쓰기 증폭 감소 기법)

  • Lee, Eunji;Jeong, Minseong;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Write amplification is a critical factor that limits the stable performance of flash-based storage systems. To reduce write amplification, this paper presents a new technique that cooperatively manages data in flash storage and nonvolatile memory (NVM). Our scheme basically considers NVM as the cache of flash storage, but allows the original data in flash storage to be invalidated if there is a cached copy in NVM, which can temporarily serve as the original data. This scheme eliminates the copy-out operation for a substantial number of cached data, thereby enhancing garbage collection efficiency. Experimental results show that the proposed scheme reduces the copy-out overhead of garbage collection by 51.4% and decreases the standard deviation of response time by 35.4% on average.