• 제목/요약/키워드: NTU

검색결과 315건 처리시간 0.024초

하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구 (A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent)

  • Paik, Ke-Jin
    • 환경위생공학
    • /
    • 제20권3호
    • /
    • pp.36-43
    • /
    • 2005
  • 하수처리장 방류수의 재이용을 위해 2004년 1월$\~$12월까지 수질상태를 조사하였다. BOD, SS, 탁도, 총인과 색도의 월별로 조사한 연평균은 각각 4.1mg/L, 2.9mg/L, 0.8NTU, 1.3mg/L, 27unit이었다. 쟈테스트는 급속혼화 5분, 완속교반 15분, 침전 1시간의 조건하에서 오염물질의 제거율을 조사하였다. 사용된 응집제는 Alum과 폴리염화알루미늄이고, 방류수 중의 색도, 탁도, 총인, 총유기탄소 등을 제거하는데 효과가 있었다. 특히 폴리염화알루미늄을 사용시 탁도와 용존성인의 제거 효과가 좋았다. 응집공정과 연속한 정밀여과 공정에 의한 유기물의 제거효과를 조사한 결과, 분자량 1,000 Dalton 이상의 범위에 있는 물질의 제거가 잘 이루어진 반면, 소독부산물의 생성에 영향을 주는 분자량 500 Dalton 이하 물질의 제거율은 낮은 것으로 조사되었다. 따라서 복합공정에서 이 범위 분자량의 물질을 제거하기 위해 흡착공정 등의 추가공정이 필요할 것으로 본다.

중앙집중식 냉방시설의 냉각탑수중 레지오넬라균과 실내외 미생물 분포에 관한 연구 (Indoor and Outdoor Distribution of Legionella spp and Microbes on Cooling Towers Water of Central Air Conditioning Facilites)

  • 방선재;이철민;김윤신;선우영
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.39-48
    • /
    • 2002
  • Cooling towers water has frequently been known as a source of infection in outbreaks of Legionnaires' disease and a source of indoor air pollution. However, there have been a few reports on the presence of Legionella in cooling towers water and aerosols of various public facilities. This study was carried out to investigate the indoor and outdoor dis-tribution of Legionella spp and microbe from 132 cooling towers water of public facilities detected 1. pneumophila in Seoul and Gyeonggi-Do areas. The results showed that the Lpneumophila among the selected 132 cooling towers was detected mostly in July (12.0%), followed by August (4.0%) and June, September no-detected. The 1. pneumophiia in public facilities was detected mostly in department store (27.3%), followed by hospital (8.7%), office building (5.9%), big market (5.0%) and hotel, subway no-detected. The pH values of cooling towers water with presence of 1. pneumophila showed mostly 8.0 or higher (9.5%), followed by 7.0~8.0 (6.8%), lower 7.0 no-detected. The tem-perature of cooling towers water with presence of L pnemophila showed mostly 30℃ or higher (9.8%), followed by 26~30℃ (6.9%), lower 25℃ no-detected. The turbidity of cooling towers water with presence of 1. pneumaphila showed mostly 1-2 M (8.8%), followed by above 2 NTU (5.9%), lower 1 NTU no-detected. The correlation coef-ficient between indoor and outdoor concentration of microbes in public facilities showed 0.67 in Legionella spy. (p>0.05), 0.93 in bacteria (p<0.01), 0.94 in fungus (p<0.01), 0.98 in coilform (p<0.01), respectively.

임하댐의 탁수 형성후 식물플랑크톤 군집 동태 (Dynamics of Phytoplankton Community after Formation of Turbid Water in Lake Imha)

  • 이경락;최재신;김한순;박정원
    • 생태와환경
    • /
    • 제38권3호통권113호
    • /
    • pp.429-434
    • /
    • 2005
  • 본 연구는 임하호의 고탁수 발생에 따른 식물플랑크톤 군집의 변화를 조사하기 위하여 2003년 5월부터 2004년7월까지 댐축 지점에서 매월 채집하였다. 2003년 9월과 10월의 가장 높은 탁도(1221 NTU) 형성은 태풍(매미)에 동반된 집중 호우 시기와 일치하였다. 출현한 식물플랑크톤은 모두 102분류군이고, 이 중 규조강이 63증류로 가장 많이 출현하였으며, 녹조강이 23종류. 남조강이 9종류, 시누라조강과 은편모조강이 각각 3종류 그리고 유글레나조강이 1종류가 출현하였다. 총 현존량은 270 ${\sim}$ 4,515 indls. $mL^{-1}$였고, 은편모조강의 Cryptomonas ovata, 규조강의 Cyclotella sp. 그리고 남조강의 Microcystis aeruginosa 등은 고탁수의 감소후 차례로 우점하였다.

2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성 (Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system)

  • 이무재;박상민;전항배;김공수;임정수
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

DOF(Dissolved Ozone Flotation) 시스템을 이용한 하수처리장 방류수의 고도처리에 대한 연구 (Advanced Secondary Wastewater Treatment Using the DOF (Dissolved Ozone Flotation) System)

  • 이병호;김상희
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.767-774
    • /
    • 2005
  • The DOF (Dissolved Ozone Flotation) system was used to treat the effluent of the secondary wastewater treatment plant. The DOF system uses ozone instead of air, while DAF (Dissolved Air Flotation) uses air. Moreover, since the solubility of ozone is higher than air, the DOF system produces larger volume of micro-bubbles than the DAF system does. Thus, the DOF system performs better than the DAF system in floating ability. The DOF system could remove 70% of turbidity to an average of 0.59NTU in effluent from 2.31NTU in influent. The removal efficiency of absorbance measured with UV-254 in the effluent of the DOF system was 63%, while only 19% was removed by the DAF system. the DOF system removed 84% of the color from 25~26CU to 4CU, while DAF system removed 42% of the color to 15 CU. The CODMn removal efficiency of the DOF system was 34%, 6.8mg/l of effluent $COD_{Mn}$ concentratin, while it was 20%, 8.3mg/L of effluent $COD_{Mn}$ concentratin, to use the DAF system. Microbial bacteria such as coliform bacteria, and heterotrophic bacteria were removed over 99% by the DOF system, and 42~45% by the DAF system. That is, Microbial bacteria were almost completely destroyed by the DOF system. To sum up with, the DOF system was found to be very effective to treat effluent of the wastewater treatment plant.

온수제조용 CO2 히트펌프의 가스쿨러 열전달 성능 해석 (Analysis of Heat Transfer Performance of a Gas Cooler of CO2 Heat Pump for Water Heating)

  • 권정태;이창경;백동석;권영철
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5317-5322
    • /
    • 2013
  • 본 연구에서는 ${\epsilon}$-NTU 방법을 사용하여 $CO_2$ 히트펌프 가스쿨러의 열전달 성능을 해석하였고, 공개된 실험결과와 비교하였다. $CO_2$ 히트펌프 가스쿨러의 열전달률, 냉매측/순환수측 출구온도를 EES로 계산하였다. 해석은 시험부를 하나의 구간으로 설정하여 냉매와 순환수측 입출구의 평균온도를 물성치로 적용한 평균해석과 시험부를 50구간으로 나누어 각 구간에서의 출구온도를 다음 구간의 입구온도로 사용한 국소해석으로 진행되었다. 실험결과로부터 평균해석보다는 국소해석의 결과가 실험값을 더 만족하였으며, 열전달률은 0.3~1.1%, 순환수측 출구온도는 1.31~1.88%, 냉매측 출구온도는 3.12~5.18% 정도의 오차를 보였다.

Cryptosporidium Oocyst Detection in Water Samples: Floatation Technique Enhanced with Immunofluorescence Is as Effective as Immunomagnetic Separation Method

  • Koompapong, Khuanchai;Sutthikornchai, Chantira;Sukthana, Yowalark
    • Parasites, Hosts and Diseases
    • /
    • 제47권4호
    • /
    • pp.353-357
    • /
    • 2009
  • Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, $10^1$, $10^2$, and $10^3$ per $10{\mu}l$ were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < $10^2$ per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.

심층여과지의 여층구성에 따른 여과특성 비교 (Characteristics of Depth Filtration for Various Filter-Bed Configurations)

  • 안종호;윤재흥
    • 한국수자원학회논문집
    • /
    • 제34권5호
    • /
    • pp.459-472
    • /
    • 2001
  • 모형실험장치를 이용하여 심층여과지에 대한 여층구성별 여과효율 평가를 통해 여과지 설계시의 여층구성에 대한 기초자료를 제공하는 것이 본 연구의 목적이다. 여과지속시간에 따른 손실수두 발달특성을 보면 여과초기의 수두손실은 이중여재 여과지가 높지만 탁질 억류에 의한 수두손실의 증가는 완만하여 여과속도 180 m/day의 동일한 여과속도를 적용하였을 경우, 조림심층 모래여과지에 비해 단위정수생산량이 30-40% 정도 증대되는 것으로 나타났다. 여과수질은 각각 여과속도 180 m/day, 240 m/day로 운전한 결과 여과속도에 관계없이 모두 0.1 NTU 이하를 나타내어 만족하는 여과수질을 보였다. 그러나 여과초기 탁질 누출 특성을 보면 상대적으로 조립심층 모래여과지의 누출 경향이 크게 나타났고, 여과속도 240 m/day로 증대됨에 따라 그 경향은 보다 뚜렷하게 나타났다.

  • PDF

Prolonged Turbidity of the Lower Nakdong River in 2003

  • Kim, Dong-Kyun;Kim, Hyun-Woo;Kim, Gu-Yeon;Kim, Young-Sang;Kim, Myoung-Chul;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • 생태와환경
    • /
    • 제38권spc호
    • /
    • pp.44-53
    • /
    • 2005
  • The Nakdong River, which lies in a monsoon climate zone with warm rainy summers and cold dry winters, is a typical ecosystem showing the attributes of a regulated river. In 2003, the total annual rainfall (1,805 mm) was higher than the average of the past nine years from 1994 to 2002 (1,250 mm). In September a powerful typhoon, Maemi, caused a big impact on the limnology of the river for over two months. Among the limnological variables, turbidity in 2003 (37.4 ${\pm}$ 94.1 NTU, n = 54) was higher than the annual average for ten years (18.5 ${\pm}$ 2.3 NTU, n = 486) in the lower part of the river (Mulgum: RK 28). Furthermore, physical disturbance (e.g. stream bank erosion within channel) in the upstream of the Imha Dam (RK ca. 350; river distance in kilometer from the estuary barrage) in the upper part of the river was a source of high turbidity, and impacted on the limnological dynamics along a 350 km section of the middle to lower part of the river. After the typhoon, high turbidity persisted more than two months in the late autumn from September to November in 2003. Flow regulation and the extended duration of turbid water are superimposed on the template of existing main channel hydroecology, which may cause spatial changes in the population dynamics of plankton in the river.

상수처리를 위한 파일롯 규모의 정밀여과/한외여과 시스템 (A Pilot-Scale Microfiltration/Ultrafiltration system for Drinking Water Treatment)

  • 김한승;오정익;김충환
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.770-777
    • /
    • 2004
  • Three pilot-scale membrane systems were operated using lake water as influent in this study. Microfiltration (MF) membrane with pore size of 0.01 m was used in Systen I of which filtration mode was set at constant pressure of $1kgf/cm^2$. Ultrafiltration (UF) membranes with molecular cutoff (MWCO) of 80,000 and 13,000 were used in System II-1 and II-2, respectively. Constant flow mode was applied at the range between 0.7 and $1.5m^3/m^2{\cdot}d$ (average of $1.1m^3/m^2${\cdot}d) for System II-1 and between 0.37 and $1.65m^3/m^2{\cdot}d$ (average of $1.18m^3/m^2{\cdot}d$) for System II-2. In System I, the flux changed from $1m^3/m^2{\cdot}d$ to $0.2m^3/m^2{\cdot}d$ during the operation time of 5 months. System II showed recovery of 94% under the allowable maximum pressure of $3kgf/cm^2$ during the same operation period. From these results, the efficient operation was observed in constant flow mode with respect to filtration time and recovery. Average filtrate turbidity showed 0.0071 NTU in System I and 0.0054 NTU in System II, which implied that high turbidity removal was obtained in both MF and UF systems with no significant difference between MF and UF. From the fact that membrane flux depends largely on membrane type and operation mode, a guideline of optimum design and operation should be suggested for application of membrane systems to full scale water treatment.