• Title/Summary/Keyword: NSGA-II

Search Result 101, Processing Time 0.02 seconds

Optimizing Bi-Objective Multi-Echelon Multi-Product Supply Chain Network Design Using New Pareto-Based Approaches

  • Jafari, Hamid Reza;Seifbarghy, Mehdi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.374-384
    • /
    • 2016
  • The efficiency of a supply chain can be extremely affected by its design which includes determining the flow pattern of material from suppliers to costumers, selecting the suppliers, and defining the opened facilities in network. In this paper, a multi-objective multi-echelon multi-product supply chain design model is proposed in which several suppliers, several manufacturers, several distribution centers as different stages of supply chain cooperate with each other to satisfy various costumers' demands. The multi-objectives of this model which considered simultaneously are 1-minimize the total cost of supply chain including production cost, transportation cost, shortage cost, and costs of opening a facility, 2-minimize the transportation time from suppliers to costumers, and 3-maximize the service level of the system by minimizing the maximum level of shortages. To configure this model a graph theoretic approach is used by considering channels among each two facilities as links and each facility as the nodes in this configuration. Based on complexity of the proposed model a multi-objective Pareto-based vibration damping optimization (VDO) algorithm is applied to solve the model and finally non-dominated sorting genetic algorithm (NSGA-II) is also applied to evaluate the performance of MOVDO. The results indicated the effectiveness of the proposed MOVDO to solve the model.

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.

Multi-objective Optimization Model for C-UAS Sensor Placement in Air Base (공군기지의 C-UAS 센서 배치를 위한 다목적 최적화 모델)

  • Shin, Minchul;Choi, Seonjoo;Park, Jongho;Oh, Sangyoon;Jeong, Chanki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Recently, there are an increased the number of reports on the misuse or malicious use of an UAS. Thus, many researchers are studying on defense schemes for UAS by developing or improving C-UAS sensor technology. However, the wrong placement of sensors may lead to a defense failure since the proper placement of sensors is critical for UAS defense. In this study, a multi-object optimization model for C-UAS sensor placement in an air base is proposed. To address the issue, we define two objective functions: the intersection ratio of interested area and the minimum detection range and try to find the optimized placement of sensors that maximizes the two functions. C-UAS placement model is designed using a NSGA-II algorithm, and through experiments and analyses the possibility of its optimization is verified.

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

Member Sizing Optimization for Seismic Design of the Inverted V-braced Steel Frames with Suspended Zipper Strut (Zipper를 가진 역V형 가새골조의 다목적 최적내진설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

Constellation Multi-Objective Optimization Design Based on QoS and Network Stability in LEO Satellite Broadband Networks

  • Yan, Dawei;You, Peng;Liu, Cong;Yong, Shaowei;Guan, Dongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1260-1283
    • /
    • 2019
  • Low earth orbit (LEO) satellite broadband network is a crucial part of the space information network. LEO satellite constellation design is a top-level design, which plays a decisive role in the overall performance of the LEO satellite network. However, the existing works on constellation design mainly focus on the coverage criterion and rarely take network performance into the design process. In this article, we develop a unified framework for constellation optimization design in LEO satellite broadband networks. Several design criteria including network performance and coverage capability are combined into the design process. Firstly, the quality of service (QoS) metrics is presented to evaluate the performance of the LEO satellite broadband network. Also, we propose a network stability model for the rapid change of the satellite network topology. Besides, a mathematical model of constellation optimization design is formulated by considering the network cost-efficiency and stability. Then, an optimization algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is provided for the problem of constellation design. Finally, the proposed method is further evaluated through numerical simulations. Simulation results validate the proposed method and show that it is an efficient and effective approach for solving the problem of constellation design in LEO satellite broadband networks.

Approximate Multi-Objective Optimization of A Wall-mounted Monitor Bracket Arm Considering Strength Design Conditions (강도조건을 고려한 벽걸이 모니터 브라켓 암의 다중목적 근사최적설계)

  • Doh, Jaehyeok;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.535-541
    • /
    • 2015
  • In this study, an approximate multi-objective optimization of a wall-mounted monitor bracket arm was performed. The rotation angle of the bracket arm was determined considering the inplane degree of freedom. We then formulated an optimization problem on maximum stress and deflection. Analyses of mean and design parameters were conducted for sensitivity regarding performance with orthogonal array and response surface method (RSM). RSM models of objective and constraint functions were generated using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by non-dominant sorting genetic algorithm (NSGA-II) were validated through the finite element analysis and we compared the obtained optimal solution by CCD and D-optimal design.

Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions (균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘)

  • Jang Su-Hyun;Yoon Byungjoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.841-848
    • /
    • 2004
  • Evolutionary a1gorithms are well-suited for multi-objective optimization problems involving several, often conflicting objectives. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. However, generalized evolutionary multi-objective optimization algorithms have a weak point, in which the distribution of solutions are not uni-formly distributed onto Pareto optimal front. In this paper, we propose an evolutionary a1gorithm for multi-objective optimization which uses seed individuals in order to overcome weakness of algorithms Published. Seed individual means a solution which is not located in the crowded region on Pareto front. And the idea of our algorithm uses seed individuals for reproducing individuals for next generation. Thus, proposed a1go-rithm takes advantage of local searching effect because new individuals are produced near the seed individual with high probability, and is able to produce comparatively uniform distributed pareto optimal solutions. Simulation results on five testbed problems show that the proposed algo-rithm could produce uniform distributed solutions onto pareto optimal front, and is able to show better convergence compared to NSGA-II on all testbed problems except multi-modal problem.