• 제목/요약/키워드: NSGA-II(Non-dominated Sorting Genetic Algorithm)

검색결과 43건 처리시간 0.021초

다목적 최적화를 위한 Goal-Pareto 기반의 NSGA-II 알고리즘 (Goal-Pareto based NSGA-II Algorithm for Multiobjective Optimization)

  • 박순규;이수복;이원철
    • 한국통신학회논문지
    • /
    • 제32권11A호
    • /
    • pp.1079-1085
    • /
    • 2007
  • NSGA (Non-dominated Sorting Algorithm) 는 다목적 최적화 분야에서 널리 사용되고 있는 비지배 정렬 기반의 유전자 알고리즘으로 최적화를 요구하는 분야에서 널리 사용되고 있다. 하지만 연산의 복잡도, 사전 우수해 선별 조건의 미흡함과 공유 변수값 결정의 어려움등이 문제로 제기 되었고, 이러한 단점을 보완한 NSGA-II(Non-dominated Sorting Algorithm-B) 알고리즘이 제안되었다. 그러나 기존의 NSGA-II알고리즘은 다목적 최적화 알고리즘과 동일하게 목적치를 최대화 또는 최소화시키는 방향으로 최적화가 진행되어 선택적인 최적화 수행이 어렵다. 이러한 문제점을 보완하기 위하여 본 논문에서는 NSGA-II알고리즘이 가지는 장점을 바탕으로 설계자의 요구조건에 종속적으로 최적화 과정을 수행할 수 있는 GBNSGA-II (Goal-pareto Based NSGA-II)를 제안하고 기존의 NSGA-II알고리즘과 비교를 통해 성능의 우수성을 검증하였다.

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

NSGA-II를 이용한 마이크로 프로펠러 수차 블레이드 최적화 (Optimization of Micro Hydro Propeller Turbine blade using NSGA-II)

  • 김병곤
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.19-29
    • /
    • 2014
  • In addition to the development of micro hydro turbine, the challenge in micro hydro turbine design as sustainable hydro devices is focused on the optimization of turbine runner blade which have decisive effect on the turbine performance to reach higher efficiency. A multi-objective optimization method to optimize the performance of runner blade of propeller turbine for micro turbine has been studied. For the initial design of planar blade cascade, singularity distribution method and the combination of the Bezier curve parametric technology is used. A non-dominated sorting genetic algorithm II(NSGA II) is developed based on the multi-objective optimization design method. The comparision with model test show that the blade charachteristics is optimized by NSGA-II has a good efficiency and load distribution. From model test and scale up calculation, the maximum prototype efficiency of the runner blade reaches as high as 90.87%.

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

$\varepsilon$-다중목적함수 진화 알고리즘을 이용한 DNA 서열 디자인 (DNA Sequence Design using $\varepsilon$ -Multiobjective Evolutionary Algorithm)

  • 신수용;이인희;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1217-1228
    • /
    • 2005
  • 최근 들어 DNA 컴퓨팅이 활발하게 연구되면서, DNA 컴퓨팅에서 가장 기본적이고도 중요한 DNA 서열 디자인 문제가 부각되고 있다. 기존의 연구에서 DNA 서열 디자인 문제를 다중목적 최적화 문제로 정의하고, elitist non-dominated sorting genetic algorithm(NSGA-II)를 이용하여 성공적으로 DNA 서열을 디자인하였다. 그런데, NSGA-II는 계산속도가 느리다는 단점이 있어서, 이를 극복하기 위해 본 논문에서는 $\varepsilon$-다중목적함수 진화알고리즘(r-Multiobjective evolutionary algorithm, $\varepsilon$-MOEA)을 DNA 서열 디자인에 이용하였다. 우선, 두 알고리즘의 성능을 보다 자세히 비교하기 위해서 DTLZ2 벤치 마크 문제에 대해서 적용한 결과, 목적함수의 개수가 작은 경우에는 큰 차이가 없으나, 목적함수의 개수가 많을 경우에는 $\varepsilon$-MOEA가 NSGA-II에 대해서 최적해를 찾는 정도(Convergence)와 다양한 해를 찾는 정도 (diversity)에 있어서 각각 $70\%,\;73\%$ 향상된 성능을 보여주었고, 또한 최적해를 찾는 속도도 비약적으로 개선되었다. 이러한 결과를 바탕으로 기존의 DNA 서열 디자인 방법론으로 디자인된 DNA 서열들과 7-순환외판원 문제 해결에 필요한 DNA 서열을 NSGA-II와 $\varepsilon$-MOEA로 재디자인하였다. 대부분의 경우 $\varepsilon$-MOEA가 우수한 결과를 보였고, 특히 7-순환외판원 문제에 대해서 NSGA-II와 비교하여 convergence와 diversity의 측면에서 유사한 결과를 2배 이상 빨리 발견하였고, 동일한 계산 시간을 이용해서는 $22\%$ 정도 보다 다양하게 해를 발견하였으며, $92\%$ 우수한 최적해를 발견하는 것을 확인하였다.

Design Optimization of Single-Stage Launch Vehicle Using Hybrid Rocket Engine

  • Kanazaki, Masahiro;Ariyairt, Atthaphon;Yoda, Hideyuki;Ito, Kazuma;Chiba, Kazuhisa;Kitagawa, Koki;Shimada, Toru
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.29-33
    • /
    • 2015
  • The multidisciplinary design optimization (MDO) of a launch vehicle (LV) with a hybrid rocket engine (HRE) was carried out to investigate the ability of an HRE for a single-stage LV. The non-dominated sorting genetic algorithm-II (NSGA-II) was employed to solve two design problems. The design problems were formulated as two-objective cases involving maximization of the downrange distance over the target flight altitude and minimization of the gross weight, for two target altitudes: 50.0 km and 100.0 km. Each objective function was empirically estimated. Several non-dominated solutions were obtained using the NSGA-II for each design problem, and in each case, a trade-off was observed between the two objective functions. The results for the two design problem indicate that economical performance of the LV is limited with the HRE in terms of the maximum downrange distances achievable. The LV geometries determined from the non-dominated solutions were examined.

Optimization Approach for a Catamaran Hull Using CAESES and STAR-CCM+

  • Yongxing, Zhang;Kim, Dong-Joon
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.272-276
    • /
    • 2020
  • This paper presents an optimization process for a catamaran hull form. The entire optimization process was managed using the CAD-CFD integration platform CAESES. The resistance of the demi-hull was simulated in calm water using the CFD solver STAR-CCM+, and an inviscid fluid model was used to reduce the computing time. The Free-Form Deformation (FFD) method was used to make local changes in the bulbous bow. For the optimization of the bulbous bow, the Non-dominated Sorting Genetic Algorithm (NSGA)-II was applied, and the optimization variables were the length, breadth, and angle between the bulbous bow and the base line. The Lackenby method was used for global variation of the bow of the hull. Nine hull forms were generated by moving the center of buoyancy while keeping the displacement constant. The optimum bow part was selected by comparing the resistance of the forms. After obtaining the optimum demi-hull, the distance between two demi-hulls was optimized. The results show that the proposed optimization sequence can be used to reduce the resistance of a catamaran in calm water.

NSGA-II를 활용한 SWAT 모형의 검보정 알고리즘 개발 (Development of Automatic SWAT Calibration Algorithm Using NSGA-II Algorithm)

  • 이용관;정충길;김세훈;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.34-34
    • /
    • 2018
  • 본 연구는 다목적 유전자 알고리즘 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)를 활용하여 자동 검보정 알고리즘을 개발하고, 이를 준분포형 수문모형인 SWAT (Soil and Water Assessment Tool) 모형에 적용하여 평가하고자 한다. 집중형 모형과 달리, 분포형 모형은 유역 내 다양한 물리적 변수와 공간 이질성(spatial heterogeneity)을 표현하기 위한 많은 매개변수를 포함하고 있고, 최근에는 기후 변화와 장기 가뭄과 같은 이상 기후에 따른 물 부족, 수질 오염 및 녹조 현상 등을 고려하기 위해 매개변수의 시간적인 변동성을 고려하기 위한 연구도 수행되고 있다. 이에 따라 본 연구에서 개발한 다목적 알고리즘은 다양한 매개변수의 시공간적 특성을 고려할 수 있도록 작성되었으며, Python으로 개발하여 타 모형으로의 확장성 및 범용성을 고려하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 IOA(Index of agreement) 등을 활용해 기존 연구 결과와 비교분석할 수 있도록 하였으며, 사용자의 선택에 따라 다른 목적함수 또한 활용할 수 있도록 하였다. NSGA-II를 활용한 SWAT 모형의 유출 해석은 다목적 함수를 고려함에 따라 실측값과 높은 상관성을 보여줄 것으로 판단되며, 이상 기후 기간 설정에 따른 유동적인 매개변수 변화를 적용할 수 있을 것으로 기대된다.

  • PDF

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.