• Title/Summary/Keyword: NS3 protein

Search Result 76, Processing Time 0.042 seconds

Effect of Rice stripe virus NS3 on Transient Gene Expression and Transgene Co-Silencing

  • Sohn, Seong-Han;Huh, Sun-Mi;Kim, Kook-Hyung;Park, Jin-Woo;Lomonossoff, George
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.310-314
    • /
    • 2011
  • Nonstructural protein 3 (NS3) encoded by RNA3 of Rice stripe virus (RSV), known to be a suppressor of gene silencing, was cloned and sequenced. The cloned NS3 gene is composed of 636 nucleotides encoding 211 deduced amino acids, and showed a high degree of similarity with the equivalent genes isolated from Korea, Japan and China. The NS3 gene promoted the enhancement of transient gene expression and suppressed transgene co-silencing. In the transient GFP expression via agroinfiltration, GFP expression was dramatically enhanced in terms of both protein yield and expression period in the presence of NS3. The highest accumulation of GFP protein reached to 6.8% of total soluble proteins, which corresponded to a two-fold increase compared to that obtained in the absence of NS3. In addition, NS3 significantly suppressed the initiation of GFP co-silencing induced by the additive GFP infiltration in GFP-transgenic Nicotiana benthamiana. The NS3 gene was also found to be a stronger suppressor than Cucumber mosaic virus 2b. These observations are believed to be derived from the strong suppressive effect of NS3 on gene silencing, and indicate that NS3 could be used as an effective enhancer for the rapid production of foreign proteins in plants.

In Vitro Determination of Dengue Virus Type 2 NS2B-NS3 Protease Activity with Fluorescent Peptide Substrates

  • Khumthong, Rabuesak;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.206-212
    • /
    • 2002
  • The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptides and the cleavage products could be separated by reversed-phase HPLC, and were identified by UV and fluorescence detection. All of the peptide substrates (representing the DEN polyprotein junction sequences at the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 sites) were cleaved by the recombinant protease NS2B-NS3(pro). No cleavage was observed with an enzymatically inactive S135A mutant of the NS3 protein, or with a modified substrate peptide of the NS3/NS4A polyprotein site that contained a K2093A substitution. Enzymatic activity was dependent on the salt concentration. A 50% decrease of activity was observed in the presence of 0.1M sodium chloride. Our results show that the NS3 protease activity of the refolded NS2B-NS3(pro) protein can be assayed in vitro with high specificity by using cleavage-junction derived peptide substrates.

Anticancer Activity of Taxillus yadoriki Parasitic to Neolitsea sericea against Non-Small Cell Lung Carcinoma

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.93-93
    • /
    • 2019
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of branches from Taxillus yadoriki parasitic to Neolitsea sericea (TN-NS-B) against human lung cancer cells, A549. TY-NS-B dose-dependently suppressed the growth of A549 cells. TY-NS-B decreased ${\beta}$-catenin protein level, but not mRNA level in A549 cells. The downregulation of ${\beta}$-catenin protein level by TY-NS-B was attenuated in the presence of MG132. Although TY-NS-B phosphorylated ${\beta}$-catenin protein, the inhibition of $GSK3{\beta}$ by LiCl did not blocked the reduction of ${\beta}$-catenin by TY-NS-B. In addition, TY-NS-B decreased ${\beta}$-catenin protein in A549 cells transfected with Flag-tagged wild type ${\beta}$-catenin or Flag-tagged S33/S37/T41 mutant ${\beta}$-catenin construct. Our results suggested that TN-NS-B may downregulate ${\beta}$-catenin protein level independent on GSK3${\beta}$-induced ${\beta}$-catenin phosphorylation. Based on these findings, TY-NS-B may be a potential candidate for the development of chemopreventive or therapeutic agents for human lung cancer.

  • PDF

Molecular and Structural Characterization of the Domain 2 of Hepatitis C Virus Non-structural Protein 5A

  • Liang, Yu;Kang, Cong Bao;Yoon, Ho Sup
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • Hepatitis C virus (HCV) non-structural protein 5A protein (NS5A), which consists of three functional domains, is involved in regulating viral replication, interferon resistance, and apoptosis. Recently, the three-dimensional structure of the domain 1 was determined. However, currently the molecular basis for the domains 2 and 3 of HCV NS5A is yet to be defined. Toward this end, we expressed, purified the domain 2 of the NS5A (NS5A-D2), and then performed biochemical and structural studies. The purified domain 2 was active and was able to bind NS5B and PKR, biological partners of NS5A. The results from gel filtration, CD analysis, 1D $^1H$ NMR and 2D $^1H-^{15}N$ heteronuclear single quantum correlation (HSQC) spectroscopy indicate that the domain 2 of NS5A appears to be flexible and disordered.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Analysis of In Vivo Interaction of HCV NS3 Protein and Specific RNA Aptamer with Yeast Three-Hybrid System

  • HWANG BYOUNGHOON;LEE SEONG-WOOK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.660-664
    • /
    • 2005
  • We have previously isolated specific RNA aptamers with high affinity against the helicase domain of hepatitis C virus (HCV) nonstructural protein 3 (NS3). The RNA aptamers competitively and efficiently inhibited the helicase activity, partially impeding HCV replicon replication in human hepatocarcinoma cells. In this study, the RNA aptamers were tested for binding to the HCV NS3 proteins in eukaryotic cells, using a yeast three-hybrid system. The aptamers were then recognized by the HCV NS3 proteins when expressed in the cells, while the antisense sequences of the aptamers were not. These results suggest that the in vitro selected RNA aptamers can also specifically bind to the target proteins in vivo. Consequently, they could be potentially utilized as anti-HCV lead compounds.

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity

  • Kang, Sang-Min;Park, Ji-Young;Han, Hee-Jeong;Song, Byeong-Min;Tark, Dongseob;Choi, Byeong-Sun;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.702-717
    • /
    • 2022
  • Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulates beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediates protein interplay between NS5A and IKKε, thereby contributing to NS5A mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

Solution Conformations of the Substrates and Inhibitor of Hepatitis C Virus NS3 Protease

  • 이정훈;방근수;정진원;안인애;노성구;이원태
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 1999
  • Hepatitis C virus (HCV) has been known to be an enveloped virus with a positive strand RNA genome and the major agent of the vast majority of transfusion associated cases of hepatitis. For viral replication, HCV structural proteins are first processed by host cell signal peptidases and NS2/NS3 site of the nonstructural protein is cleaved by a zinc-dependent protease NS2 with N-terminal NS3. The four remaining junctions are cleaved by a separate NS3 protease. The solution conformations of NS4B/5A, NS5A/5B substrates and NS5A/5B inhibitor have been determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. NMR data suggested that the both NS5A/5B substrate and inhibitor appeared to have a folded tum-like conformation not only between P1 and P6 position but also C-terminal region, whereas the NS4B/5A substrate exhibited mostly extended conformation. In addition, we have found that the conformation of the NS5A/5B inhibitor slightly differs from that of NS5A/5B substrate peptide, suggesting different binding mode for NS3 protease. These findings will be of importance for designing efficient inhibitor to suppress HCV processing.