• Title/Summary/Keyword: NPK fertilizer

Search Result 250, Processing Time 0.021 seconds

Effects of DTPA application on Growth of Red Pepper (Capsicum annuum L.) and Chemical Properties of Nutrient Accumulated Soil in Plastic film House

  • Kim, Myung Sook;Kim, Yoo Hak;Lee, Chang Hoon;Park, Seong Jin;Ko, Byong Gu;Yun, Sun Gang;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • This study was conducted to evaluate effects of diethylene triamine penta acetic acid (DTPA) treatment on growth of red pepper and nutrient availability to salt accumulated soil in the plastic film house. The treatments were no application (Control), chemical fertilizers (NPK), DTPA (0.06, 0.13, and 0.19 mM) and the half of chemical fertilizers (NPK) with DTPA 0.06 mM. Fruit yield of red pepper showed no significant difference between the treatments (control, NPK, DTPA 0.06 mM, 0.13 mM, except for DTPA 0.19 mM. Red peppers were killed by DTPA 0.19 mM treatment because the high concentration of DTPA was toxic to crop. However, dry mass (stem and leave) and nutrient uptake of red pepper in DTPA 0.06 mM treatment increased significantly compared with those of control. In particular, nutrient uptake of red pepper in DTPA 0.06 mM treatment increased in the order of Fe, Mn, and Zn > Ca and Mg > K, as the magnitude of the stability constants of DTPA. Thus the application of DTPA 0.06 mM was the most effective for the alleviation of nutrient accumulation in the plastic film house soils.

Efficacy of Cyanobacterial Biofertilizer (CBB) on Leaf Yield and Quality of Mulberry and its Impact on Silkworm Cocoon Characters

  • Dasappa D.M. Ram Rao;Ramaswamy S.N.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • An experiment was conducted to study the efficiency of cyanobacterial biofertilizer (CBB) with chemical (NPK) fertilizer on quantitative and qualitative characters of mulberry variety Kanva-2. Their influences on silkworm growth and cocoon characters were also studied. Ten different CBB and NPK fertilizer treatments were given to 5000 plants of established mulberry garden. Treatments were of four types viz., (i) T1 to T7: single and combination dose of CBB+50% NPK (ii) T8: combination dose of CBB + 25%NPK, (iii) T9: CBB only and (iv) T10: control-l00% NPK. Soil pH decreased and nutrients status increased in CBB (T1- T9) treated plots. Average of ten crops data on quantitative traits revealed that T7 (CBB [N. muscorum (1.0 g), A. variahilis (1.0) and S. millei (1.0 g)] + 50% NPK) was very effective in improving growth parameters. Leaf yield was also found high in treatment T7 (32.12 tons/ha/yr.) followed by T10 (31.17 tons/ha/yr.) and T8 (27.67 tons/ha/yr.). Leaf quality characters were found high in T7 and low in T9. Most of the quality traits in T7 are on par with control no. The results revealed that reduction in the dose of chemical fertilizers in T7 did not affect the leaf yield and leaf quality traits of mulberry. This clearly indicates that the efficiency of CBB (T7) provides nitrogen, increases essential nutrients available in soil, maintain soil pH and supply growth substances required for the improvement of leaf yield and leaf quality of mulberry. Bioassay study also revealed no significant difference in silkworm growth and cocoon characters between treatments T7 and T10. Economics calculated revealed that T7 is highly economical and beneficial over T10 by gaining an amount of Rs. 660/-/acre/crop. Thus, treatment T7 containing N. muscorum (1.0 g), A. variahilis (1.0 g) and S. millei (1.0 g) + 50% NPK fertilizers can be recommended to sericulturists mainly to reduce the use of NPK fertilizers, by saving 50% of its cost and to improve soil fertility conditions, which in turn improves leaf yield and quality of mulberry.

Spatial Distribution of Rice Root under Long-term Chemical and Manure Fertilization in Paddy (화학비료 및 희비 장기시용에 따른 벼 뿌리 분포 특성)

  • 전원태;박창영;조영손;박기도;윤을수;강위금;박성태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • It is well known that root distribution of rice is a crucial factor for nutrient absorbtion and affect by soil fertility management. However, the findings on root distribution are limited due to laborious and tedious work. The characteristics of root distribution were investigated in long-term fertilizer experiment plots that were established in paddy soil, a fine silty family of typic Hal-paqueps (Pyeongtaeg series) in 1967. fertilizer experiment plots of no fertilizer, compost, NPK and NPK+compost plot have been maintained consistently for the past thirty six year and Npk+silicate plot for the past twenty two years. In NPK plot, 150kg N (urea), 100kg -$\textrm{P}_2\textrm{O}_5$ (fused phosphate) and 100kg $\textrm{K}_2\textrm{O}$(potassium chloride) per hectare have been applied. For NPK+silicate plot, 500kg $\textrm{Si}\textrm{O}_2$ (silicate) was applied in addition to fertilizer in NPK plot. For the compost plot, 10,000kg rice straw compost per hectare were applied. Root samples were taken from the positions of hill-center (below hill) and mid-point of four adjacent rice hills at heading stage by cylinder monolith (CM) method. The soil cores were sampled 20cm depth from the soil surface and partitioned four into layers at an interval of 5cm. The soil particles surrounding roots were washed out with tap water, Length and weight of the roots in each soil layer were measured and root length density (RLD), root weight density (RWD), specific root length(SRL) and rooting depth index (RDI) were calculated. Total root length was measured by intersection method. Plant height, tiller and shoot dry weight were the highest in NPK+compost plot. But RLD of hill-center soil cores was the highest in no-fertilizer plots. In the soil cores from mid-point position of four adjacent hills, RLD at 15-20cm soil depth was higher in compost plot than NPK plot. RLD in compost plots showed even distribution compared to those in chemical- fertilizer plots. RWD was the highest in the NPK+compost plot. SRL was the lowest in the NPK+silicate plot. RDI was the highest in the compost plot. Also, in this experiment it was found that the distribution of roots was closely related to the physical properties of the soil as affected by fertilization management.

Assessment of Soil Properties and Growth of Organically Cultivated Cucumber (Cucumis sativus L.) with Applications of Livestock Manure Compost and Fish Meal Liquid Fertilizer (가축분 퇴비와 어분 액비 시용이 유기농 오이 생육 및 토양환경에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Lee, Sang-min;Nam, Hong-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This study was carried out to investigate the effects of livestock manure compost and fish-meal liquid fertilizer on the growth of cucumber and the soil properties for the stable production of organic cucumber. Cucumber was transplanted in greenhouse on the $6^{th}$ of April in 2017, and this experiment contained five treatments: livestock manure compost 100% (LC 100%), livestock manure compost 50% + fish-meal liquid fertilizer 50% (LC50 + LF50), livestock manure compost 50% (LC50), chemical fertilizer (NPK), and no fertilizer (NF). As a result, it was shown that soil chemical properties of LC50 + LF50 plot is not different from that of LC100 plot except for the EC content, but soil chemical properties of LC50 + LF50 plot is statistically significantly different from that of NPK plot except for pH. As a result of evaluating the functional diversity of soil microbial communities using Biolog system, the substrate richness (S) and the diversity index (H) were the highest in LC50 + LF50 plot. As a result of comparing the cucumber growth and yield, it was found that there was no statistically significant difference between the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot, but the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot were different from that of LC50 and NF plot. The yield of cucumber was the highest in NPK plot r(7,397 kg/10a), but there was no statistically significant difference in the yield of cucumber between NPK plot and LC100, LC50 + LF50 plot. The above-described results suggested that the livestock manure compost and fish meal liquid fertilizer can be used for organic cucumber production under greenhouse condition.

Effect of Organic Fertilizer as Bio-com Application on the Changes of Soil Microorganisms, Gas Evolution, and Mineral-N Transformation in Submerged Condition (유기질비료(有機質肥料) Bio-com 시용(施用)이 토양(土壤)의 미생물상(微生物相) 및 화학성(化學性)에 미치는 영향(影響))

  • Kim, Jeong-Je;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.351-357
    • /
    • 1987
  • A laboratory experiment was conducted to find out the effect of organic fertilizer as Bio-com$^{(R)}$ on the changes of pH and Eh values, gas evolution, ammonification and nitrification, and microbial population with farmer's compost and refused mushroom compost in submerged paddy condition. The results obtained are summarized as follows: 1. Application of compost and refused mushroom compost was increased the pH values than that of NPK alone. Organic fertilizer of Bio-com$^{(R)}$ showed the same results of the farmer's compost or refused mushroom compost. 2. Population of soil microbes as bacteria, actinomycetes and fungi was increased by application of compost, refused mushroom compost and Bio-com$^{(R)}$. Moreover, the results were pronounced more with the addition of NPK. 3. The application of Bio-com$^{(R)}$ was effected to the increase of the amount of $NO_3-N$ and the rate of nitrification than NPK, farmer's compost or refused mushroom compost. 4. The amounts of evolved gases as $CH_4$, $CO_2$, and $N_2O$ were not much differed with application of kinds of compost and NPK, but little increasing tendency was observed in application of NPK than that of NPK+kinds of compost.

  • PDF

Recommendations of NPK Fertilizers based on Soil Testing and Yied Response for Radish in Highland (고랭지 무 재배지 토양검정에 의한 NPK 시비기준량)

  • Lee, Gye-Jun;Lee, Jeong-Tae;Zhang, Yong-Seon;Hwang, Seon-Woong;Park, Chol-Soo;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.167-171
    • /
    • 2009
  • An attempt was made to provide the most reasonable fertilizer recommendation for radish crop based on soil analysis data and yield response to the N, P, K fertilizers, which was obtained from field experiments on 2004 in highland, 850 meters above the sea level. Optimum times of NPK application to past application amount based on soil test were 0.90-0.77-0.50 for radish. The adjusted NPK recommendation models of highland soil were made by adding the application times to past application methods which were based on chemical properties of soil. The revised models for fertilizer application were recommended to decrease the amount of N, P, K by 10-23-50% for radish in highland. In application to total cultivation area, 2,546ha for radish, saving amounts of NPK fertilizers with these adjusted recommendation in comparison with past application levels will be 244.4 tons for radish. Using the optimal application amounts for radish, we will can reduce agricultural pollution without affecting crop yields.

The Effect of Food Waste Compost on Tomato (Lycoperscion Esculentum.L) Growth and Soil Chemical Properties (음식물류 폐기물 퇴비 시용이 토마토 생육 및 토양특성에 미치는 영향)

  • Lee, Young Don;Huseein, Khalid Abdallah;Yoo, Jae Hong;Joo, Jin Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.332-337
    • /
    • 2019
  • BACKGROUND: From year 2005, landfill for food waste has been prohibited. Also, according to London agreement in year 2013, ocean discharge for livestock manure, sewage sludge, and food waste has been regulated. Alternative way for food waste disposal is incineration. However, due to high moisture content, additional input for energy is needed. Therefore, effective way for food waste disposal such as application of food waste compost is needed. METHODS AND RESULTS: Seven different treatments (livestock compost, food waste compost, food waste + livestock compost, livestock compost + chemical fertilizer, food waste compost + chemical fertilizer, food waste + livestock compost + chemical fertilizer and control) were applied to tomato crop. All treatments were replicated with completely randomized design. Tomato growth treated with LC+NPK showed the highest values at 6 weeks for all parameters such as leaf length (11.80 cm), leaf width (6.88 cm), and chlorophyll (61.12 O.D.), compared to other treatments. Subsequently the FWC+LC+NPK treatment was followed (11.51 cm, 6.40 cm, 59.50 O.D. for leaf length, leaf width, and chlorophyll, respectably). EC, OM contents, and CEC in the soil treated with the composts significantly increased. CONCLUSION: To evaluate the effect of food waste compost application on tomato growth and soil chemical properties, we carried out field experiment treated with 7 treatments with 3 replicates. The LC+NPK treatment showed highest values for all parameters. Some parameters such as shoot length and total length for tomato were not significantly different between the LC+NPK and the FWC+LC+NPK treatments.

Effect of Intermittent Drainage on Nitrous Oxide Emission and Global Warming Potential in Rice Paddy Soil

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1187-1193
    • /
    • 2012
  • Water control is mainly one of the key factors that can affect nitrous oxide ($N_2O$) emissions from soils. This study was undertaken to determine the effect of intermittent drainage compared to continuous flooding (conventional water regime) on $N_2O$ emission to global warming potential (GWP) with NPK (standard cultivation practice), NPK+Straw, and PK fertilizations. Nitrous oxide emission rates were collected twice a week using a closed chamber method. With continuous flooding, nitrogen (N) application increased $N_2O$ emission by 106.6% ($0.64kg\;ha^{-1}$ in NPK) with respect to the PK treatment ($0.31kg\;ha^{-1}$), and straw addition to NPK enhanced 148.3% of seasonal $N_2O$ flux ($0.77kg\;ha^{-1}$ in NPK+Straw). Although seasonal $N_2O$ emission slightly increased by 16.1-42.9% with intermittent irrigation, its seasonal $CH_4$ emission drastically reduced at 43.5-52.8% resulting in a lower GWP at 48.9-58.5% with respect to that of continuously flooded treatments ($4.51Mg\;CO_2\;ha^{-1}$, PK; $7.60Mg\;CO_2\;ha^{-1}$, NPK; $14.55Mg\;CO_2\;ha^{-1}$, NPK+Straw). Rice yield, at similar fertilization with the continuously-flooded rice field, was not affected by intermittent irrigation. Conclusively, intermittent irrigation can be very effective and a rational soil management strategy to mitigate GWP with considering rice productivity in a temperate paddy rice field like Korea.

Utilization of Liquid Waste from Methane Fermentation as a Source of Organic Fertilizer -III. Effect of Liquid Waste from Methane Fermentation on Maize Yield (메탄발효폐액(醱酵廢液)의 비료화(肥料化)에 관(關)한 연구(硏究) -III. 옥수수에 대(對)한 폐액(廢液)의 비효시험(肥效試驗))

  • Lim, Dong-Kyu;Shin, Jae-Sung;Choi, Du-Hoi;Park, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.333-336
    • /
    • 1987
  • A liquid waste from methane fermantation was applied on Maize field to determine its effect and optimum application rate on the plant growth. A basal application of liquid waste increased a considerable amount of soil water resulting in an increase of germination. Fresh and dry yields of maize plant increased as the liquid waste application rate increased and same as plant growth. Nitrogen and phosphorus components in plant and soil showed the same tendency as the yields. The result indicates that the liquid waste is potentially useful source for a fertilizer and irrigation water.

  • PDF