• Title/Summary/Keyword: NPK fertilizer

Search Result 250, Processing Time 0.028 seconds

Effect of Organic Materials on Growth and Nitrogen Use Efficiency of Rice in Paddy (유기자재 시용이 벼의 생육과 질소이용효율에 미치는 영향)

  • Cho, Jung-Lai;Choi, Hyun-Sug;Lee, Youn;Lee, Sang-Min;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.211-220
    • /
    • 2012
  • This study was conducted to evaluate soil nutrient concentrations and N uptake efficiency of paddy rice as affected by nutrient sources from 2009 to 2011. The treatments included chemical fertilizer, compost, oilcake, oilcake 2X, hairy vetch, vetch+rye, and control. Nutrient applications were made at rates equivalent to approximately 90 kg of actual N per hectare. Oilcake had the lowest C:N ratio from the raw materials, but compost had the highest C:N ratio of 34:1. Soil pH and concentrations of C, N, Ca, and Mg were unaffected by nutrient source treatments. N uptake efficiency was the greatest for oilcake-treated rice compared to those treated by NPK, hairy vetch, and compost in 2009 and 2010. Composttreated rice had the greatest N uptake efficiency in 2011 when the high amount of precipitation occurred.

Improving productivity of mulberry trees and silkworm, Bombyx mori L., using vermicompost application

  • Ghazy, Usama M.;Fouad, Tahia A.;Ahmed, Ghada M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.40 no.2
    • /
    • pp.41-50
    • /
    • 2020
  • Vermicompost, manure, compost and organic fertilization are ecofriendly. Nowadays, many products resulted from sericulture consumed by humans such as mulberry leaves, fruits, mulberry tea, silk and natural silk cosmetics. Soil applications of three treatments with vermicompost (0.5, 1 and 2 tons per 0.42 hectare) and recommended rate of mineral fertilizers of nitrogen phosphorus potassium were used for investigation. Impact of fertilization on mulberry plant traits of moisture, number of shoots/tree, total shoots length/tree, number of leaves/shoot, number of leaves/ (100g), leaf yield/tree and leaf yield of fadden/season were recorded. In addition the effect of fertilization on larval and cocoon characters of young instar duration, fifth instar duration, total larval duration, larval mortality percentage, weight of third instar larvae, weight of fourth instar larvae, weight of fifth instar larvae, fresh cocoon weight, fresh shell weight, pupae weight, cocoon shell ratio, silk productivity, cocooning percentage, pupation ratio, number of cocoons/ liter, crop cocoons by number, crop cocoons by weight, fecundity and fertility. Using vermicompost treatment was enhancing plant characters. Treatments of V3, V2 and V1 were shortage young, fifth and larvae durations. Mostly feeding silkworm during the whole larval duration on treated mulberry leaves with vermicompost improving the traits average. Using vermicompost for fertilization by rate of V3 and V2 is better than others for cocoon characters for females and males.V3 and V2 of vermicompost per 0.42 hectare is recommended for rearing mulberry silkworm instead of mineral fertilization.

Influence of Organic Fertilizer to Korean Turfgrass(Zoysia Japonica) in Golf Courses (골프코스에서의 유기질비료 시용효과)

  • Ham, Suon-Kyu;Lee, Ju-Young;Kim, Chang-Soo;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.140-146
    • /
    • 2002
  • 본 시험은 채종유박과 미강유박을 주원료로 하고 질소, 인산, 칼리의 함량이 7.23%이고 중금속이 거의 없이 개발된 유기질비료(크럼블-80)를 공시비료로 기비와 추비시비 방식의 포장시험을 통하여 토양과 한국잔디의 생육에 미치는 영향과 시비효율을 구명하여 올바른 시비방법 및 시비량을 제시하고자 2000년 4월부터 12월까지 경기도 용인시 소재 태광컨트리클럽 증식포(기비시험)와 경기도 파주시 소재 서서울컨트리클럽 10홀 티(추비시험)에서 실시하였다. 기비시험 결과, 엽록소 측정결과의 처리효과는 무처리구가 100일 때 관행구 117%, 관행구+크럼블-80 $150g/m^2$ 123%, 크럼블-80 $150g/m^2$ 115%, 크럼블-80 $300g/m^2$ 119%, 크럼블-80 $75g/m^2$ 102%로 효과가 있는 것으로 나타났다. 유기질비료인 크럼블-80은 시비량에 따라 엽록소 함량이 약간 증가되었으나 NPK와 혼합처리구에서 가장 높은 것은 공시비료의 단독처리보다는 복합비료와 혼용하는 것이 더 효과적인 것으로 나타났다. 추비시험 결과, 잔디생육기간 중 잔디건물중을 조사한 결과는 크럼블-80의 시용량이 많을수록 잔디건물중도 증가하였으며, 처리구에 따라 무처리구보다 5~45(%) 정도의 증수효과가 있는 것으로 나타났다. 그러나 엽록소함량은 처리구가 무처리구보다는 높았으나 골프코스에 필요한 녹색유지에는 부족하므로 화학비료와의 혼용시비가 필요하다고 판단된다. 본 시험결과로 볼 때 시험에 사용된 공시비료는 골프코스 잔디관리에 적합한 비료로 판단된다. 시험결과를 토대로 한 권장시비량은 기비시비의 경우 잔디식재 전에 공시비료 $300g/m^2$를 표토 10cm와 잘 혼합하여 시비하되, 추비시비는 공시비료와 화학비료와의 혼용시비가 필요하다고 판단된다.

  • PDF

Trace element levels and selenium uptake in cereals grown in lower Austria

  • Sager M.;Hoesch J.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.479-492
    • /
    • 2003
  • Wheat, barley, rye, and maize were grown in field and pot experiments at various non-contaminated soils in order to establish uptake rates for added selenate, and to find baseline concentrations for various soil types. Edible parts (grains) and stalks of the crops were analyzed separately for Se, as well as for Ca, Cu, Fe, Mn, P, S, and Zn. The addition of Na-selenate in admixture with the NPK 20:8:8 fertilizer had no influence on the composition of the other elements investigated. The proportions of added nitrate: selenate, and sulfate:selenate were kept constant. The Se- uptake rate differed among the cereals tested, it was highest for winter wheat. Utilization of added Se in the field ranged from $0,4-4,7\%$, and and in the pots from $3,3-5,4\%$, it was markedly lower in clay soil. Whereas P and Zn were preferably found in the grains, Ca-Fe-Mn-S got enriched in the stalks. For the fields, the location had some influence upon Fe, Mn, and Zn, whereas it was not important for P, S, Cu, and strikingly, Ca. Pot and field experiments on similar soils led to different results, except for P and S. Maize (whole grains) was significantly lower in Ca, Cu, and Mn, and might even cause trace element deficiencies, if exclusively fed. Few correlations between the trace elements investigated led to the conclusion that most element contents were governed by plant metabolism. Variations of mobile Fe in the soils were balanced by uptake into the stalks. The data are compared with data from other presumably non-contaminated sites.

  • PDF

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.

Inoculation Effect of Methylobacterium suomiense on Growth of Red Pepper under Different Levels of Organic and Chemical Fertilizers (화학비료와 유기질비료의 시용수준 및 Methylobacterium suomiense CBMB120의 처리가 고추 생육에 미치는 영향)

  • Lee, Min-Kyoung;Lee, Gil-Seung;Yim, Woo-Jong;Hong, In-Soo;Palaniappan, Pitchai;Siddikee, Md. Ashaduzzaman;Boruah, Hari P. Deka;Madhaiyan, Munusamy;Ahn, Ki-Sup;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.266-273
    • /
    • 2009
  • Use of plant growth promoting symbiotic and non-symbiotic free-living beneficial bacteria as external source of nitrogen is a major research concern for sustainable crop production in the $21^{st}$ century. In view of this, an experiment was conducted under controlled conditions to determine the effects of inoculation with Methylobacterium suomiense CBMB120, a plant growth promoting (PGP) root and shoot colonizer on red pepper, for the purpose of reducing external chemical nitrogen fertilization. Amendments with organic fertilizer and chemical fertilizer in the form of NPK were made at dosages of 50%, 75% and 100%, at 425 and $115kg/ha^{-1}$ measurements. The soil type used was loam, with a pH of 5.13. The growth responses were measured as plant height at 19, 36 and 166 days after transplantation and final biomass production after 166 days. It was found that inoculation with M. suomiense CBMB120 promotes plant height increase during the active growth phase at 19 and 36 days by 14.17% and 10.03%, respectively. Thereafter, the bacteria inoculated plantlets showed canopy size increment. A highly significant inoculation effect on plant height at p<0.01 level was found for 100% level of organic matter and chemical amendment in red pepper plantlets after 36 days and 19 days from transplantation. Furthermore, there was a significantly higher (10.30% and 6.84%) dry biomass accumulation in M. suomiense CBMB120 inoculated plants compared to un-inoculated ones. A 25% reduction in the application of chemical nitrogen can be inferred with inoculation of M. suomiense CBMB120 at with comparable results to that of 100% chemical fertilization alone. Enumeration of total bacteria in rhizosphere soil confirms that the introduced bacteria can multiply along ther hizosphere soil. Large scale field study may lead to the development of M. suomiense CBMB120 as an efficient biofertilizer.

Fertilizer Management Practices with Rice Straw Application for Improving Soil Quality in Watermelon Monoculture Greenhouse Plots (시비관리 및 생 볏짚 처리가 수박연작 시설재배지 토양에 미치는 영향)

  • Ahn, Byung-Koo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Indoor cultivation plots for watermelon plant mostly have salt-accumulation problem because of continuous cropping especially with the heavy applications of chemical fertilizers. Thus, this study was conducted to investigate selected soil properties and watermelon growth condition as affected by the application of different farming practices in the salt-affected soils of greenhouse plots used for continuous watermelon production. Five different practice conditions in the experimental plots were applied, 1) a conventional farming practice (CFP), 2) a nitrogen-phosphorus-potassium (NPK) fertilizer management practice (FMP), and 3) the FMP with different amounts (5, 10, and 15 ton $ha^{-1}$)of fresh rice straw treatments (FMP-RS), for three years of study. As comparing with CFP plots, soil organic matter content gradually increased during the experimental years, whereas it decreased in the FMP only plot. Soil pH was not changed in the CFP and FMP plot, but it declined in the FMP-RS plots; however, it increased again from the third year in the FMP-RS plots with applying 10 and 15 ton $ha^{-1}$ of RS treatments. The concentrations of exchangeable cations, $Ca^{2+}$ and $Mg^{2+}$, except $K^+$, and water-soluble anions, ${NO_3}^-$, $Cl^-$, ${SO_4}^{2-}$ and ${PO_4}^{3-}$, markedly decreased in FMP and FMP-RS plots. In particular, the application of rice straw tended to significantly decrease the ion concentrations, especially most anions, in the first year, but there was no more decrease in the second and third study years. With relation to the ion concentrations, the changes of electrical conductivity (EC) after applying the management practices showed very similar to those of the ion concentrations. In addition, incidence of withered watermelon plant after applying the management practices dramatically declined from approximately 20% in the CFP plot to 3.5% in the FMP-RS plots. Water melon fruit weight was also improved by the management practices, especially FMP-RS. Therefore, the fertilizer and/or fresh rice straw application management practices are beneficial to improve salt-affected soils and watermelon plant growth condition.

Changes of Nutrient Accumulation Type and Chemical Property on Annual Dressing Paddy Soil in Fluvio-marine deposit (하해혼성 충적층 유기물 연용 논토양의 화학성 및 양분 집적형태 변화)

  • Yang, Chang-Hyu;Yoo, Young-Seok;Yoo, Chul-Hyun;Jung, Ji-Ho;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.351-356
    • /
    • 2006
  • A long-term experiment was initiated in 1979 at Experiment Farm of Honam Agricultural Research Institute, to investigate the effects of continued use of organic matter (rice straw and compost) along with different levels of nitrogen fertilizer in rice cultivation. The soils of experimental plots is classified as Jeonbug series developed on Fluvio-marine deposits. The application rates of rice straw and compost were 5 Mg/ha/year and 10 Mg/ha/per year, respectively. The fertilizer N application rates per season were 0, 100, 150, 200, and 250 kg/ha. In 2002, after 24 years of experiment, the effect of different treatments on soil pH, characteristics soil organic matter, soil N and P were investigated. The results of the study is summarized as following. The continue use of organic matter tended to lower the soil pH, to increase organic matter and available phosphate contents. The rice straw tended to lower soil pH more than compost, while the effect of compost was greater in increasing soil organic matter and available soil P then rice straw. The application of organic matter resulted in the increase in total organic N in the soil. Such effect was greater in compost application than in rice straw application. In organic N, greatest was amino acid-N, followed by unidentifiable organic N. The least was amino sugar-N. The application of organic matter with and without nitrogen fertilizer affected the in organic fractions of P, particularly Fe-P and Al-P. The application of rice straw tended to increase Ca-P.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF