본 논문은 지금까지 NP-완전 문제로 다항시간 알고리즘이 존재하지 않는 완전피복 문제에 대해 선형시간으로 해를 구할 수 있는 알고리즘을 제안하였다. 제안된 알고리즘은 "행과 열에는 동일한 값이 존재하면 안된다"는 완전피복문제의 특징을 이용하였다. 이를 위해 먼저 최소 원소 개수를 가진 부분집합을 선택하고 선택된 부분집합의 원소를 가진 부분집합을 삭제하였다. 남은 부분집합들을 대상으로 반복적으로 수행하면 해를 구한다. 만약, 해를 구하지 못하면 최대 원소 개수를 가진 부분집합을 선택하여 동일한 과정을 수행하였다. 제안된 알고리즘은 일반적인 완전피복 문제의 해를 쉽게 구하였다. 추가로, 완전피복 문제를 보다 일반화한 N-퀸 문제를 대상으로 제안된 알고리즘을 적용할 수 있음을 보였다. 결국, 제안된 완전피복 알고리즘은 완전피복 문제에 대해 P-문제임을 증명하였다.
본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Hadwiger 추측의 반증을 제시하였다. Hadwiger 추측은 "모든 $K_k$-minor free 그래프는 k-1개의 색으로 칠할 수 있다. 즉, $K_k$-마이너를 얻으면 ${\chi}(G)=k$이다." Hadwiger 추측을 적용하여 정점 색칠을 할 경우, 먼저 NP-완전 (NP-complete)인 $K_k$-마이너를 구하여 ${\chi}(G)=k$를 결정하고, 다시 NP-완전인 정점 색칠 문제를 풀어야 한다. Hadwiger 추측을 반증하기 위해 본 논문은 정점 색칠의 정확한 해를 O(V)의 선형시간으로 구하는 알고리즘을 제시하였다. 제안된 알고리즘은 그래프의 최소 차수를 가진 정점을 최대독립집합 (MIS)으로 하고, MIS 정점의 인접 정점 간선을 삭제한 축소된 그래프에 대해 이 과정을 반복하면서 하나의 색을 가진 MIS를 얻는다. 다음으로 MIS 정점의 간선을 삭제한 축소된 그래프에 대해 동일한 과정을 수행하여 MIS의 개수가 정점 채색수 ${\chi}(G)=k$가 되는 해를 얻는다. 제안된 알고리즘을 적용하여 NP-완전 문제인 완전 색칠 (total coloring) 채색수 ${\chi}^{{\prime}{\prime}}(G)$의 해를 구하는 알고리즘을 제안하였다. 제안된 알고리즘을 $K_4$-마이너 그래프에 적용한 결과 ${\chi}(G)=4$가 아닌 ${\chi}(G)=3$을 얻었다. 결국, Hadwiger 추측은 모든 그래프에 대해 적용되지 않음을 알 수 있다. 제안된 알고리즘은 마이너를 구하지 않으며, 주어진 그래프에 대해 직접 ${\chi}(G)=k$인 독립집합 마이너를 구하여 각 독립집합 정점들에 동일한 색을 배정하는 단순한 방법이다.
최근 양자 컴퓨터가 개발되는 등 컴퓨팅 하드웨어의 성능이 발전하면서 단시간 내에 처리할 수 있는 정보의 양이 기하급수적으로 증가하고 있다. Koblitz-Fellows가 제안한 암호시스템은 생성할 수 있는 불변 다항식(invariant polynomial)의 개수가 충분하지 않아 특정 3-정규 그래프에서 완전지배집합(Perfect Dominating Set, PDS)을 찾는 문제가 NP-complete임을 보장할 수 없는 문제점이 발생한다. 본 논문에서는 이러한 취약점을 보완하기 위해 Koblitz-Fellows가 제안한 3-정규 그래프 상에서 완전지배집합을 이용하여 불변 다항식의 개수를 기하급수적으로 증가시킴으로 계산의 복잡도를 더욱 난해하게 하여 암호시스템의 취약점을 개선하도록 제안한다.
외판원 문제(Traveling Salesman Problem)는 주어진 n개의 도시들과 그 도시들 간의 거리비용이 주어졌을 때, 모든 도시들을 정확히 한번씩만 방문하면서 걸린 비용이 최소가 드는 경로를 찾는 문제이다. 따라서 최적해(optimal)를 구하는 것은 전형적인 NP-완전 문제 중의 하나로, 외판원 문제를 해결하려는 다양한 알고리즘들이 개발되고 있다. 특히 실제 생체 분자(bio-molecule)를 계산의 도구로 사용하는 새로운 계산 방법인 DNA 컴퓨팅은 DNA 분자가 잠재적으로 가지고 있는 막대한 병렬성을 이용해서 NP-완전 문제들을 해결하고자 하는 연구들이 많이 진행되고 있다. 그러나 아직 실제 생체 분자의 특성을 잘 반영하는 계산 모델이나 분자 생물학에서 사용하는 연산들이 많이 개발되지 않아 계산 효율이 비교적 좋지 않다. 따라서 본 논문에서는 외판원 문제를 해결하기 위한 DAN컴퓨팅의 새로운 중합 효소 연쇄 반응(Polymerase Chain Reaction, PCR) 연산을 개발하였다.
최적 해를 다항시간으로 얻을 수 있는 알고리즘이 알려져 있지 않은 NP-완전인 상자포장 문제의 일종인 바지선 적재 문제에 대해, Gu$\acute{e}$ret et al.은 $O(m^4)$ 수행 복잡도의 선형계획법으로 해를 얻고자 하였다. 반면에, 본 논문에서는 이득 우선순위로 적재하는 규칙인 O(m log m) 복잡도의 알고리즘을 제안하였다. 제안된 방법은 첫 번째로 이득 우선순위를 결정하였다. 다음으로, 이득 우선순위 물품들을 바지선에 적재하는 방법으로 초기 적재 결과를 얻었다. 마지막으로, 바지선 적재 용량을 미달하는 경우, 이전에 적재된 물품과 미선적된 물품을 상호 교환하여 바지선 적재용량을 충족시켰다. 실험 결과, 제안된 알고리즘은 NP-완전 문제인 바지선 적재 문제에 대해 선형계획법의 $O(m^4)$를 O(m log m)으로 단축시켰다.
본 논문은 NP-완전 문제인 간선 색칠과 그래프 부류 결정 문제를 동시에 해결하는 O(E)의 다항시간 알고리즘을 제안하였다. 제안된 알고리즘은 최대차수-최소차수 정점 쌍 간선을 단순히 선택하는 방법으로 간선 채색수 ${\chi}^{\prime}(G)$를 결정하였다. 결정된 ${\chi}^{\prime}(G)$는 ${\Delta}(G)$ 또는 ${\Delta}(G)+1$을 얻는다. 결국, 알고리즘 수행 결과 얻은 ${\chi}^{\prime}(G)$로부터 ${\chi}^{\prime}(G)={\Delta}(G)$이면 부류 1, ${\chi}^{\prime}(G)={\Delta}(G)+1$이면 부류 2로 분류할 수 있다. 또한, 미해결 문제로 알려진 "최대차수가 6인 단순, 평면 그래프는 부류 1이다."라는 Vizing의 평면 그래프 추정도 증명하였다.
남자 대학생의 피부에서 분리한 Moraxella osloensis NP7는 베타-락탐과 아미노글리코사이드 항생제에 대해 내성을 보였다. 본 연구에서는 NP7 균주 유전체의 완전한 염기서열과 유전자 주석을 보고하고자 한다. NP7 균주는 원형 염색체와 7개의 플라스미드를 갖고 있다. 염색체는 43.9%의 G + C 함량을 갖는 2,389,582개의 염기쌍을 갖고 있으며, 단백질을 암호하는 2,065개의 유전자를 보유하고 있다. 전체 플라스미드는 평균적으로 40.5%의 G + C 함량을 갖는 654,202개의 염기쌍을 갖고 있으며, 단백질을 암호하는 667개의 유전자를 보유하고 있다. 염색체는 4개의 리보좀 RNA 오페론, 1개의 transfermessenger RNA 유전자, 47개의 tRNA 유전자, 3개의 핵산스위치 유전자 그리고 3개의CRISPR array를 포함하고 있으며, 1개의 CRISPR은 pNP7-1 플라스미드에 존재한다. 베타-락탐과 아미노글리코사이드 항생제에 내성을 부여하는 유전자는 pNP7-1 플라스미드에 존재하고 있다.
여러 문자열들을 비교하여 유사성 또는 거리(오차)를 계산하는 문제는 패턴매칭, 웹검색 바이오인포매틱스, 컴퓨터 보안 등 다양한 응용 분야와의 연관성으로 인해 활발히 연구되어 왔다. 주어진 문자열 집합 내의 여러 문자열들의 거리를 비교하기 위해 주어진 집합 내의 모든 문자열들을 대표하는 한 문자열(대표문자열)을 찾는 방법이 있다. 대표문자열 방법은 주어진 문자열 집합과 가장 유사한 한 문자열을 찾는 방법으로 주로 이용되는 목적함수는 거리반경과 거리합이 있다. 거리반경은 집합 내의 문자열들과 특정 문자열과의 거리들의 최대값으로 정의되며, 모든 문자열들 중에서 최소의 거리반경을 만드는 문자열을 주어진 문자열 집합에 대한 거리반경기반 대표문자열이라 한다. 거리합은 집합 내의 문자열들과 특정 문자열과의 거리들의 합으로 정의되며, 모든 문자열들 중에서 최소의 거리합을 만드는 문자열을 주어진 문자열집합에 대한 거리합기반 대표문자열이라 한다. 본 논문에서는 메트릭 거리함수에 대해 거리반경기반 대표문자열 문제가 NP-완전임을 증명한다.
외판원 문제(Traveling Salesman Problem)는 주어진 n개의 도시들과 그 도시들간의 거리비용이 주어졌을 때, 모든 도시들을 정확히 한번씩만 방문하면서 걸린 비용이 최소가 드는 경로를 찾는 문제로 최적해(optimal)을 구하는 것은 전형적인 NP-완전 문제중의 하나이다. 따라서 외판원 문제를 해결하는 다양한 알고리즘들이 개발되고 있다. 특히 요즈음은 실제 생체 분자(bio-molecule)를 계산의 도구로 사용하는 새로운 계산 방법인 DNA 컴퓨팅은 DNA 분자가 잠재적으로 가지고 있는 막대한 병렬성을 이용해서 NP-완전 문제들을 해결하고자 하는 연구들이 땀이 진행되고 있다. 그러나 아직 실제 생체 분자의 특성을 잘 반영하는 계산 모델이나 분자 생물학에서 사용하는 연산들이 많이 개발되지 알아 계산 효율이 비교적 좋지 않다. 따라서 본 논문에서는 외판원 문제를 해결하기 위한 DAN컴퓨팅의 새로운 중합 효소 연쇄 반응(Polymerase Chain Reaction, PCR) 연산을 개발하였다.
공개키 암호 알고리즘의 암호화 함수는 한 방향으로의 계산은 매우 쉬우나, 역 계산은 매우 어렵다는 일방향성과 특별한 정보를 가지면 역 계산이 가능하다는 트랩도어(trapdoor)성질이 있어야 하기 때문에 NP 문제나 계산상 풀기 어려운 수학 문제에 기반하여 연구되고 있다. 본 논문에서는 정수 계획법이라는 NP-완전 문제를 이용한 새로운 공개키 암호 알고리즘을 제안한다. 이 알고리즘의 키 생성 방식은 기존의 배낭꾸리기 암호 TTMXPA의 방식과 유사히지만 기존 시스템의 공격 대상이었던 비밀키가 가지는 취약성을 보완하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.