• Title/Summary/Keyword: NOx reduction with $NH_3$

Search Result 82, Processing Time 0.027 seconds

A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support (다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구)

  • Kwon, Dong Wook;Choi, Hyun Jin;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.190-194
    • /
    • 2012
  • 10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (I) (저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(I))

  • Lee, Jae-Ok;Song, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.409-413
    • /
    • 2006
  • An experimental study on a combined $De-NO_x$ process of non-thermal plasma and $NH_{3}$ SCR, which can be operated under low temperature conditions, i.e. $150{\sim}200^{\circ}C$, has been conducted. The test results confirmed feasibility of fast SCR reaction, which shows faster reactivity compared with typical SCR reaction under the low temperature conditions. The test showed that pre-oxidation step to convert NO to $NO_2$ is necessary for the fast SCR reaction, and the appropriate ratio of $NO_{2}/NO_{x}$ ranges from 0.3 to 0.5. Ammonium salts produced under low temperature conditions, effects of hydrocarbons on the combined process, the operation power of the process are discussed in the present study.

Numerical Study on Energy and Environmental System : SNCR, Vortex Tube (환경${\cdot}$에너지 시스템에 관한 수치해석적 연구 : SNCR, 보텍스튜브)

  • Jang Dong-Sun;Sin Na-Il;Seo Jae-Dong;Sin Mi-Su;Eom Tae-In;Kim Dong-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.162-170
    • /
    • 1999
  • Numerical study has been peformed to develop a computer code for the design & optimal operating condition of SNCR(Selective Noncatalytic Reactor) for NOx reduction together with the analysis of the performance of vortex tube. Especially for the SNCR of the scale of industrial boiler, the required mixing and residence time of $NH_3$ solution was successfully tested numerically by the implementation of some baffle setups in a combustor. The introduction of interesting phenomena of vortex tube and similar system is made together with a theoretical hypothesis and simple cold flow simulation for the flow field analysis.

  • PDF

Effect of $SO_2$ on DeNOx by Ammonia in Simultaneous Removal of SOx and NOx over Activated Coke (활성 코우크스상의 동시 탈황탈질에서 암모니아에 의한 탈질에 이산화황이 미치는 영향)

  • Kim, Hark-Joon;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • The $SO_2$ and $NO_x$ removal with an activated coke catalyst was conducted by a two-stage reaction which first $SO_2$ was oxidized to $H_2SO_4$ and then $NO_x$ was reduced to $N_2$. But if unreacted sulfur dioxide entered in the second stage, the $NO_x$ reduction was hindered by the reaction with ammonia. In this study, experimental investigations by using lab-scale column apparatus on the product and the reactivity of $SO_2$ with ammonia over coke catalyst which was activated with sulfuric acid was carried out through ultimate analysis DTA, TGA and SEM of catalyst before and after the reaction. Also, the effect of reaction emperature on the reactivity of $SO_2$ with ammonia was determined by means of breakthrough curves with time. The obtained results from this study were summarized as following; Activated cokes were decreased carbon component and increased oxygen and sulfur components in comparison with original cokes. The products over coke catalyst were faced fine crystal of $(NH_4)_2SO_4$, which results in the pressure loss of reacting system. The order of general reactivity in terms of the reaction temperature after breakthrough for $SO_2$ was found to be $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$. This was related to adsorption amounts of ammonia on the activated cokes.

The Effect of SO2 and H2O on the NO Reduction of V2O5-WO3/TiO2/SiC Catalytic Filter (V2O5-WO3/TiO2/SiC 촉매필터의 NO 환원에 SO2와 H2O가 미치는 영향)

  • Ha, Ji-Won;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • For investigating NO reduction activity of an catalytic filter, the catalytic performance was measured under the presence of $SO_2$ and $H_2O$, respectively or simultaneously in the simulation gas composed of NO, $NH_3$, and air. The catalytic filter was prepared by coating $V_2O_5-WO_3/TiO_2$ catalyst on the pore surface of SiC filter element of which the superior performance for the particulate removal was well known. At the temperature below $260^{\circ}C$, the catalytic activities were enormously decreased under the presence of $SO_2$ and $H_2O$, respectively or simultaneously, compared with those under the cases of the absence of $SO_2$ and $H_2O$. However, the presence of $SO_2$ promoted the performance of the catalytic filter above $320^{\circ}C$ with showing the NO conversion better than 99.8% for the NO inlet concentration of 500 ppm and at the face velocity of 2 cm/s. In particular, the presence of water showed high NO conversion higher than 99% up to high temperature of $380^{\circ}C$. This effect of water was explained by the reason that it retarded the ammonia oxidation which is the main step into the formation of $N_2O$. The initial NO reduction activity of the catalytic filter maintained for the duration of 100 hours in the presence of $SO_2$ and $H_2O$. Therefore, it was concluded that the catalytic filter was promisingly useful for the industrial NOx reduction catalyst in order to treat the particulate and NO simultaneously.

Removal of NO Using CuO/3Al2O3 · 2SiO2 Catalyst Impregnated Ceramic Candle Filters (산화구리 촉매담지 세라믹 캔들필터를 이용한 NO 제거)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.291-302
    • /
    • 2004
  • The CuO/$3AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters for nitrogen oxides removal were prepared by porous mullite($3AL_2O_3{\cdot}2SiO_2$) support and CuO catalyst deposited on this support to achieve uniformly dispersed CuO deposition, which are impregnated into the pores of available alumino-silicate ceramic candle filter. The CuO/3$AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters were characterized by XRD, BET, air permeability, pore size, SEM and catalytic tests in the reduction of NOx by NH$_3$. The observed effects of CuO/3$AL_2O_3{\cdot}2SiO_2$ impregnated ceramic candle filters in SCR reaction are as follows : (1) when the content of CuO catalyst increased further, activity of NO increased. (2) NO conversion at first increased with temperature and then decreased at high temperatures (above 40$0^{\circ}C$), possibly due to the occurrence of the ammonia oxidation reaction. (3) In pilot plant test for 3 months, NO conversion was greater than 90%.

Effects of Different Precursors on the Surface Mn Species Over $MnO_x/TiO_2$ for Low-temperature SCR of NOx with $NH_3$

  • Kim, Jang-Hoon;Yoon, Sang-Hyun;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The selective catalytic reduction (SCR) of $MnO_x$ with $NH_3$ is an effective method for the removal of $MnO_x$ from stationary system. The typical catalyst for this method is $V_2O_5-WO_3(MoO_3)/TiO_2$, caused by the high activity and stability. However, This catalyst is active within $300{\sim}400^{\circ}C$ and occurs the pore plugging from the deposition of ammonium sulfate salts on the catalysts surface. It needs to locate the SCR unit after the desulfurizer and electrostatic precipitator without reheating of the flue gas as well as deposition of dust on the catalyst. The manganese oxides supported on titania catalysts have attracted interest because of its high SCR activity at low temperature. The catalytic activity of $MnO_x/TiO_2$ SCR catalyst with different manganese precursors have investigated for low-temperature SCR in terms of structural, morphological, and physico-chemical analyses. The $MnO_x/TiO_2$ were prepared from three different precursors such as manganese nitrate, manganese acetate (II), and manganese acetate (III) by the sol-gel method and then it calcinated at $500^{\circ}C$ for 2 hr. The structural analysis was carried out to identify the phase transition and the change intensity of catalytic activity by various manganese precursors was analyzed by FT-IR and Raman spectroscopy. These different precursors also led to various surface Mn concentrations indicated by SEM. The Mn acetate (III) tends to be more suppressive the crystalline phase (rutile), and it has not only smaller particle size, but also better distributed than the others. It was confirmed that the catalytic activity of MA (III)-$MnO_x/TiO_2$ was the highest among them.

  • PDF

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System (박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구)

  • Jang, Jaehwan;Park, Hyunchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • Among various De-NOx technologies, Urea-based Selective Catalytic Reduction (SCR) systems are known to be the most effective in marine diesel applications. The spraying and mixing behavior of the urea-water solution has a decisive effect on the system's net efficiency. Therefore, in this study, the spray behavior and ammonia uniformity with and without a static mixer were analyzed by CFD in order to optimize the SCR system. The results showed that the static mixer significantly affected the uniformity of velocity and ammonia concentration. Static mixers may be especially suited for marine SCR systems with space constraints.