A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support

다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구

  • Kwon, Dong Wook (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Choi, Hyun Jin (Department of Green Process R&D, Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology) ;
  • Park, Kwang Hee (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
  • 권동욱 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 최현진 (한국생산기술연구원 청정생산시스템연구본부) ;
  • 박광희 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지시스템공학과)
  • Published : 2012.04.10

Abstract

10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

다양한 상용 $TiO_2$ 담체를 이용한 10 wt%의 Mn계 촉매를 습윤함침법으로 제조하여 $NH_3$에 의한 NO의 저온 선택적 촉매환원법(SCR) 반응 특성을 연구하였다. 촉매의 특성은 BET, XRD, XPS 그리고 TPR과 같은 물리화학적 분석을 통해 수행되었다. MnOx/$TiO_2$ 촉매의 MnOx 표면밀도는 비표면적에 영향을 받는다. 고분산된 망간산화물에 의한 낮은 MnOx surface density로 저온 SCR 활성이 증가하고 망간산화물의 $MnO_2$에서 $Mn_2O_3$로 환원되는 온도가 감소되었다. 우수한 SCR활성을 위해서는 망간산화물을 높은 비표면적을 가진 $TiO_2$에 담지되어야 하고 고분산된 비정질종이 존재해야 한다.

Keywords

References

  1. A. Fritz and V. Pitchon, Appl. Catal. B, 13, 1 (1997). https://doi.org/10.1016/S0926-3373(96)00102-6
  2. P. Forzatti, Appl. Catal. A, 222, 221 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  3. H. Karge, Handbook of Heterogeneous Catalysis, 2nd edn, 5 (2008).
  4. S. H. Hong, J. Y. Lee, S. P. Cho, and S. C. Hong, Prospectives of Industrial Chemistry, 8, 2 (2005).
  5. D. Rehder, Detoxification of Heavy Metals, 30, 205 (2011).
  6. F. Kapteijn, L. Singoredjo, A. Andreini, and J. Moulijn, Appl. Catal. B, 3, 173 (1994). https://doi.org/10.1016/0926-3373(93)E0034-9
  7. X. Tang, J. Hao and W. Xu, and J. Li, Catal. Commun., 8, 329 (2007). https://doi.org/10.1016/j.catcom.2006.06.025
  8. T. S. Park, S. K. Jeong, S. H. Hong, and S. C. Hong, Ind. Eng. Chem. Res., 40, 4491 (2001). https://doi.org/10.1021/ie010218+
  9. M. Kang, E. D. Park, J.M. Kim, and J. E. Yie, Catal. Today, 111, 236 (2006). https://doi.org/10.1016/j.cattod.2005.10.032
  10. G. Qi, R. T. Yang, and R. Chang, Appl. Catal. B, 51, 93 (2004). https://doi.org/10.1016/j.apcatb.2004.01.023
  11. G. Qi and R. T. Yang, J. Catal., 217, 434 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  12. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Appl. Catal. A, 327, 261 (2007). https://doi.org/10.1016/j.apcata.2007.05.024
  13. W. S. Kijlstra, J. C. M. L. Daamen, J. M. van de Graaf, B. van der Linden, E. K. Poels, and A. Bliek, Appl. Catal. B, 7, 337 (1996). https://doi.org/10.1016/0926-3373(95)00052-6
  14. W. Sjoerd Kijlstra, M. Biervliet, E. K. Poels, and A. Bliek, Appl. Catal. B, 16, 327 (1998). https://doi.org/10.1016/S0926-3373(97)00089-1
  15. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1, 297 (1992). https://doi.org/10.1016/0926-3373(92)80055-5
  16. G. Qi and R. T. Yang, Appl. Catal. B, 60, 13 (2005). https://doi.org/10.1016/j.apcatb.2005.01.012
  17. A. Z. Ma and W. Grunert, Chem. Commun., 71 (1999).
  18. J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Catal. Commun., 8, 1896 (2007). https://doi.org/10.1016/j.catcom.2007.03.007
  19. Z. Wu, R. Jin, Y. Liu, and H. Wang, Catal. Commun., 9, 2217 (2008). https://doi.org/10.1016/j.catcom.2008.05.001
  20. Z. Wu, B. Jiang, Y. Liu, W. Zhao, and B. Guan, J. Hazard. Mater., 145, 488 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.045
  21. B. Jiang, Y. Liu, and Z. Wu, J. Hazard. Mater., 162, 1249 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.013
  22. P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Ind. Eng. Chem. Res., 45, 6436 (2006). https://doi.org/10.1021/ie060484t
  23. F. Kapteijn, A. D. V. Langeveld, J. A. Moulijn, and A. Andrein, J. Catal., 150, 94 (1994). https://doi.org/10.1006/jcat.1994.1325
  24. P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, and P. G. Smirniotic, Appl. Catal. B, 76, 123 (2007). https://doi.org/10.1016/j.apcatb.2007.05.010
  25. P. G. Smirniotics, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Ind. Eng. Chem. Res., 45, 6436 (2006). https://doi.org/10.1021/ie060484t
  26. A. Sorrentino, S. Rega, D. Sannini, A. Nagliano, P. Ciambeli, and E. Santacesaria, Appl. Catal. A, 209, 45 (2001). https://doi.org/10.1016/S0926-860X(00)00742-0