• 제목/요약/키워드: NOx생성특성

검색결과 116건 처리시간 0.037초

층류 확산화염에서의 매연과 질소산화물의 배출특성 : 공기측/연료측 희석제 첨가에 따른 영향 (Soot and NOx Emissions in Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition)

  • 이종호;엄재호;박철웅;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.596-603
    • /
    • 2003
  • Present study has been conducted to see the relative effects of adding N: to fuel-side and air-side on flame structure, soot formation and NOx emissions. Experiments were carried out to ascertain to what degree chemical kinetics and/or molecular transport effects can explain the differences in soot formation and NOx emission by studying laminar diffusion flames. Direct photograph was taken to see the flame structure. CARS techniques was used to get the flame temperature profiles. And spatial distribution of soot could be obtained by PLII method. CHEMKIN code was also used to estimate the global residence time to predict NOx emissions at each condition. Results from these studies indicate that fuel-side dilution is more effective than air-side dilution in view of NOx emissions. However, air-side dilution shows greater effectiveness over fuel-side dilution in soot formation. And turbulent mixing and heat transfer problems were thought to be considered in practical applications.

CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성 (The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame)

  • 황철홍;현승호;탁영조;이창언
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.

석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석 (Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner)

  • 이정원;강성모;김용모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

수소 난류확산화염에서 NOx 생성특성에 대한 화염열복사의 영향 (The Effect of Flame Radiation on NOx Emission Characteristics in Hydrogen Thrbulent Diffusion Flames)

  • 김승한;김문기;윤영빈
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.51-62
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the 1/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

소형 직교류 열교환기의 열적 특성에 관한 연구 (Thermal Characteristics of Cross-flow Small Scale Heat Exchanger)

  • 금성민;유병훈;이관석;이승로
    • 에너지공학
    • /
    • 제22권1호
    • /
    • pp.44-50
    • /
    • 2013
  • 본 연구의 목적은 예혼합방식의 버너 앞에 소형 열교환기를 설치한 후 당량비를 변화시킬 때 NOx와 CO의 배출특성을 검토하고 열교환기 유용도와 엔트로피 생성수를 실험결과를 바탕으로 계산한 것이다. 실험결과 당량비가 증가할수록 화염온도가 높아지면서 열전달율은 상승한다. 배기가스 오염물질량과 유용도를 고려할 경우 본 실험범위에서의 적정 운전당량비는 0.75이다. 유용도를 증가시키고 엔트로피 생성량을 줄이기 위해서는 연소가스의 열전달량을 증가시켜야 하며 따라서 열교환기 면적을 증가시키는 것이 필요하다고 판단된다.

동축 공기다단 LPG화염의 NOx 생성특성에 관한 연구 (Characteristics of NOB Formation in a Coaxial Multi-Air Staged LPG Flame)

  • 김한석;안국영;김호근;유명종;백승욱
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.215-226
    • /
    • 2003
  • Experimental and numerical studies have been done to examine the effects of excess air ratio and tertiary air swirl number on the formation characteristics of NOx in a pilot scale combustor adopting a multi-air staged burner. In numerical calculation the mathematical models for turbulence, radiation and nitric oxide chemistry were taken into account. The radiative transfer equation was solved using the discrete ordinates method with the weighted sum of gray gases model. In the NOx chemistry model, the chemical reaction rates for thermal and prompt NOx were statistically averaged using a probability density function. The results were validated by comparison with measurements. For the experiment, a 0.2 MW pilot multi-staged air burner has been designed and fabricated. Using the numerical simulation developed here, a variation of thermal and prompt NOx formation was predicted by changing the excess air ratio and tertiary air swirl number. As the excess air ratio increased up to 1.9, the formation of the total as well as thermal NOx at exit increased while the prompt NOx decreased. The formation of thermal NOx was more affected by concentration of $O_2$ and $N_2$ than gas temperature. When the tertiary air swirl number increased, the formation of the total as well as the prompt NOx slightly decreased.

1996년~2000년 서울의 오존 농도 경향 (The Characteristics of the ozone concentrations at Seoul Korea between 1996 and 2000)

  • 김정화;김용표
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.203-204
    • /
    • 2003
  • 광화학 스모그 현상은 전 세계를 비롯하여 서울에서도 새로운 사회 현안으로 부각되고 있다 (Ghim and Chang, 2000). 광화학 반응에 의해 오존 농도가 증가할 수 있고, 광화학 반응으로 생성된 이차 에어로졸은 시정을 악화시킨다. 광화학 반응에 의해 생성된 이차 에어로졸은 대부분이 미세입자이다. 이차 에어로졸과 오존은 NOx와 VOCs (volatile organic compounds)같은 전구물질 사이의 복잡한 반응으로부터 생성된다. 그러므로 서울의 광화학 스모그 발생을 제어하기 위해서는 오존과 미세입자의 특성을 이해하는 것이 필수적이다. (중략)

  • PDF

광화학챔버를 이용한 오존발생 특성 연구 (Characteristics of Ozone Production in Photochemical Smog Chamber)

  • 홍유덕;한진석;공부주;이상욱;이석조;이덕길
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.171-173
    • /
    • 2003
  • 광화학스모그 챔버의 성능을 평가하기 위하여 파장별 광도시험, 광원의 NO$_2$ 광분해 상수, pure air experiment 등 성능실험을 수행하고, VOCs 종류 및 VOCs/NOx 비가 오존생성 및 입자상물질의 생성에 미치는 영향과 온도, 습도가 오존생성에 미치는 영향 등을 평가하였다. (중략)

  • PDF

$CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조 (NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames)

  • 한지웅;이승로;이창언
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

DME/Air 비예혼합화염의 NOx 생성특성 (NOx Emission Characteristics of Dimethyl Ether/Air Nonpremixed Flames)

  • 황철홍;금성민;이창언
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.926-935
    • /
    • 2007
  • The NOx emission characteristics of DME in laminar coaxial jet and counterflow nonpremixed flames were investigated using experimental and numerical approaches, respectively. The flame structure and NOx emission of DME were compared with those of $C_2H_6$ and $C_3H_8$. The DME flame was calculated using the Kaiser's mechanism, while the $C_2H_6$ and $C_3H_8$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show in coaxial jet flame that DME flame has the characteristics of partial premixed flame and the flame length decreases up to 1/3 than that of $C_3H_8$ in the same condition of fuel mass flowrate. Then, the NOx emission of DME decreases to 40% approximately, comparing with that of $C_3H_8$. In the calculated results of counterflow nonpremixed flame, DME flame shows the $EI_{NO}$ decreases up to 50% approximately than those of$ C_2H_6$ and $C_3H_8$ flames when the equivalent fuels are consumed per unit mass and time. Although the overall NOx reaction path of DME is similar with other hydrocarbon fuels, it can be identified that DME flame has a distinct NO reduction mechanism due to the reburning NO chemistry in fuel rich region. From these results, we can conclude that the different NOx emission characteristics of DME flame with other hydrocarbon fuels are attributed to not the temperature increase and the activation of NO reactions due to O atom in DME fuel but the rapid processes of pyrolysis/oxidation.