• Title/Summary/Keyword: NOx생성특성

Search Result 116, Processing Time 0.03 seconds

Experimental Study on the Flame Stability and the NOx Emission Characteristics of Low-Btu Coal Gas Fuel (저 발열량 석탄가스 연료의 화염 안정성 및 NOx 발생 특성에 관한 실험적 연구)

  • Lee, Chan;Kim, Yong-Chul
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • 저발열량 석탄가스의 thermal/fuel NOx 생성특성과 화염 안정성을 규명하기 위한 실험적 연구를 수행하였다. 저발열량 합성 연료 가스는 일산화탄소, 수소, 질소 및 암모니아를 천연가스 연료와 동일한 입열량을 가지도록 혼합하여 만들었고 , 합성가스는 평면 화염 버너를 공급하여 태웠다. 특정한 합성가스에 대해 당량비를 변화시켜 가며, 비화 또는 역화에 의한 화염안정성을 규명하였고 안정된 화염 영역을 정의하였다. 저발열향 합성가스의 연소시 발생하는 thermal 및 fuel NOx를 측정하여 천연가스 연소시의 경우와 비교하였다.

  • PDF

특집:녹색선박 SCR시스템 기술개발 현황 - 가변 유량 Urea 분사 모듈개발

  • Jeong, Gyeong-Yeol;Park, Chang-Dae;Im, Byeong-Ju;Lee, Chung-Won;Heung, Jeong-Gu;Gu, Geon-U
    • 기계와재료
    • /
    • v.24 no.2
    • /
    • pp.48-61
    • /
    • 2012
  • NOx 저감방법으로 여러 가지 방법들이 존재하며 연구되고 있다. 그중 Urea-SCR은 적용가능한 온도범위가 넓고 우수한 저감효율을 보여 자동차엔진의 NOx 저감장치로 많은 연구가 진행되어 왔다. Urea-SCR은 고체 Urea의 열 해리반응으로 생성되는 암모니아가스와 NOx 와의 화학반응으로 제거하는 것이 목적이다. NOx저감효율에 직접적인 영향을 주는 변수에는 분사노즐의 분무특성, 배기관내 분사위치, 요소수의 유량제어 등 여러 가지가 존재한다. 따라서 본문에서는 여러 가지 분사노즐, 유량제어방법, 배기가스 물성치 및 관내 유동특성 등에 대해 소개하고 Urea-SCR시스템 적용가능성을 언급하고자 한다.

  • PDF

The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor (마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성)

  • Son, M.G.;Ahn, K.Y.;Lee, H.S.;Yoon, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

Combustion Characteristics of Non-premixed VIStA Burner in Once-Through-Type Boiler (관류보일러 연소실에서 비예혼합 VIStA 버너의 연소 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.547-552
    • /
    • 2010
  • A modified VIStA (vortex inertial staged air) burner was developed and used in a once-through-type boiler. For safety, the combustion in this burner is of the non-premixed type. An air damper is installed to control the distribution of air to each combustion chamber. The effects of the air-fuel ratio and air distribution on NOx formation were investigated. The newly modified VIStA burner gives NOx reduction effect by maximum 20% in the combustion chamber of a boiler, while it yields more uniform flame than the conventional burner.

Heat Transfer and Pressure Drop of Cross-flow Heat Exchanger on Modules Variation (직교류 열교환기의 모듈수에 따른 열전달 및 압력강하 특성)

  • Kim, Jong-Min;Kim, Jinsu;Yu, Byeonghun;Kum, Sungmin;Lee, Chang-Eon;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • This study investigated the characteristics of heat transfer and pressure drop for cross-flow heat exchanger of premixed combustion system. The premixed burner was in front of a heat exchanger, and the number of heat exchanger modules was changed to investigate the characteristics of NOx and CO emissions with various equivalence ratios. In addition, the effectiveness, entropy generation and pressure drop were calculated by various number of heat exchanger modules and the performance of heat exchanger was analyzed by the exergy loss.

Drop Tube Furnace Studies of Coal Combustion on the Fuel-N Release and NOx Emission (질소 해리도와 NOx의 방출 특성 비교를 위한 DTF 연소실험)

  • Park, Chu-sik;Han, Woong;Kim, Sung-one;Choi, Sang-Il;Park, Seok-ho
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.41-45
    • /
    • 1999
  • 연소 중에 발생하는 주요 공해물질 중의 하나가 질소산화물(NOx)이며 석탄의 연소에서는 타 연료를 사용하는 연소와 비교하여 많은 양의 질소산화물이 생성된다. 이러한 현상은 석탄에 결합되어있는 연료 중 질소(fuel-N)의 산화에 기인한 것이다. 석탄 연소 시 fuel-N에 의하여 생성되는 질소산화물은 전체 질소산화물의 75%이상, 때에 따라서는 95%까지 점하는 결과를 보여 준다.(중략)

  • PDF

Effect of Heat Loss on CO and NOx Emission Characteristics in the Postflame Region of Premixed Flames (예혼합 화염후류에서 열전달이 CO 및 NOx 생성 특성에 미치는 영향)

  • Kim, Jong-Min;Kim, Tae-Hyun;Kum, Sung-Min;Kim,, Se-Won;Jang, Gi-Hyun;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • Strict pollutant regulations of NOx emission and increasing awareness of the environmental damage stimulated interest in research to obtain useful information regarding CO and NOx reductions at the same time. In this study, $CH_4$/air premixed flame was examined numerically to reduce CO and NOx emission level simultaneously in the post-flame region by the heat loss models in which radiative and combined conductive and convective heat losses were included. To reduce the NOx emission, first heat exchanger location was decided near the flame. After first heat exchanger was decided for the optimal NOx emission(about 30 ppm), in order to decide the optimal CO emission(about 30ppm), seocond heat exchanger location was tested and decided for several cases. Finally, the optimal location of heat exchanger for minimal CO and NOx emission simultaneously were determined and suggested.

  • PDF

Correlation Research between Simultaneous Removal Reaction for NOx, Soot and Physico-chemical Properties of Pt/TiO2's Supports (Pt/TiO2 촉매의 담체 물성과 NOx, Soot 동시 반응특성과의 상관관계 연구)

  • Kim, Sung Su;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.178-182
    • /
    • 2010
  • Simultaneous removal reaction for NOx, soot over Pt catalysts using various $TiO_2$ as support was studied. The catalytic tests ware carried out injectin NO, soot, NO and soot simultaneously on each catalysts. As results, it showed different NOx removal efficiency and soot oxidation rate according to various kinds of $TiO_2$. Onset temperature of soot oxidation has a correlation to $NO_2$ generated for the independently performed NOx. It was investigated that NO to $NO_2$ oxidation was intimately related to crystallite size and surface area, and it has a tremendous impact on Pt aggregation on the catalyst surface and catalyst' reducibility. Therefore, we concluded that major index of the reaction was physico-chemical properties of catalyst' supports.

A Study of Simultaneous Reaction for NOx, Soot and Thermal Shock according to Pt Catalyst's Supports (담체에 따른 Pt 촉매의 NOx, soot 동시 반응특성과 열충격에 관한 연구)

  • Kim, Sung Su;Park, Kwang Hee;Bae, Se Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.437-442
    • /
    • 2009
  • In this work, thermal shock and simultaneous removal reaction for NOx, soot over Pt catalysts using $TiO_2$, $Al_2O_3$ as support were studied. The catalytic reaction test for NOx and soot were also performed independently and simultaneously, as a result, it showed different NOx removal efficiency and soot oxidation rate according to support and phase, and the onset temperature of soot oxidation has correlation to NOx removal efficiency for the catalyst. The onset temperature of soot oxidation shifted to lower temperature by generated $NO_2$ at the simultaneous reaction for NOx and soot. Also Pt/$TiO_2$ catalyst is more affected than Pt/$Al_2O_3$ on NOx removal efficiency caused by thermal shock while Pt sintering effect induced to reduce the performance on soot oxidation rate for all catalysts.

Fundamental Studies on NOx Emission Characteristics in a Dimethyl Ether/Air Nonpremixed Flame (DME/Air 비예혼합화염의 NOx 생성 특성에 관한 기초 연구)

  • Kim, Tae-Hyun;Kim, Jong-Hyun;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1973-1978
    • /
    • 2008
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_3H_8$ and $C_2H_6$. The DME flames were calculated using Kaiser's mechanism, while the $C_2H_6$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60% of $C_3H_8$. In the calculated results of counterflow nonpremixed flames, the EINO of DME nonpremixed flame is low as much as 50% of the $C_2H_6$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF