• Title/Summary/Keyword: NOS model

Search Result 247, Processing Time 0.019 seconds

Ficus vasculosa Wall. ex Miq. Inhibits the LPS-Induced Inflammation in RAW264.7 Macrophages

  • Ji-Won, Park;Jin-Mi, Park;Sangmi, Eum;Jung Hee, Kim;Jae Hoon, Oh;Jinseon, Choi;Tran The, Bach;Nguyen, Van Sinh;Sangho, Choi;Kyung-Seop, Ahn;Jae-Won, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.574-583
    • /
    • 2022
  • Ficus vasculosa Wall. ex Miq. (FV) has been used as a herbal medicine in Southeast Asia and its antioxidant activity has been shown in previous studies. However, it has not yet been elucidated whether FV exerts anti-inflammatory effects on activated-macrophages. Thus, we aimed to evaluate the ameliorative property of FV methanol extract (FM) on lipopolysaccharide (LPS)-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 macrophages. The experimental results indicated that FM decreased the production of inflammatory mediators (NO/PGE2) and the mRNA/protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. FM also reduced the secretion of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in LPS-stimulated RAW264.7 cells. Results also demonstrated that FM improved inflammatory response in LPS-stimulated A549 airway epithelial cells by inhibiting the production of cytokines, such as IL-1β, IL-6 and TNF-α. In addition, FM suppressed MAPK activation and NF-κB nuclear translocation induced by LPS. FM also upregulated the mRNA/protein expression levels of heme oxygenase-1 and the nuclear translocation of nuclear factor erythroid 2-related factor 2 in RAW264.7 cells. In an experimental animal model of LPS-induced acute lung injury, the increased levels of molecules in bronchoalveolar lavage (BAL) fluid were suppressed by FM administration. Collectively, it was founded that FM has anti-inflammatory properties on activated-macrophages by suppressing inflammatory molecules and regulating the activation of MAPK/NF-κB signaling.

Anti-osteoarthritis effect of Boswellia serrata gum resin extract in monosodium iodoacetate-induced osteoarthritic Sprague-Dawley rats (Monosodium iodoacetate 유도 골관절염 동물모델에서 보스웰리아 검레진 추출물의 항골관절염 효과 연구)

  • Jae In Jung;Ryong Kim;Eun Ji Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.231-246
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the anti-osteoarthritic effect of the ethanol extract of Boswellia serrata gum resin (FJH-UBS) enriched with keto-β-boswellic acid and 3-O-acetyl-11-keto-β-boswellic acid compared to the conventional Boswellia serrata extract by adding the process of removing oil with hexane, in the monosodium iodoacetate (MIA)-induced osteoarthritis rat model. Methods: Sprague-Dawley (SD) rats were orally administered 0, 40, or 80 mg of FJH-UBS/kg body weight (BW)/day for 5 weeks and injected with MIA intra-articularly into right knee joints on day 15 to induce osteoarthritis. Changes in the knee joint microarchitecture, cartilage degradation, the expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) in serum and synovia were observed. Results: Oral administration of FJH-UBS (80 mg/kg BW/day) reduced MIA-induced knee swelling and cartilage degradation and increased the expression of type II collagen and aggrecan in articular cartilage. Furthermore, FJH-UBS administration reduced MIA-induced increases in the serum levels of prostaglandin E2, leukotriene B4, interleukin (IL)-1β, IL-6, and MMP-13, and MIA-induced increases in the mRNA expressions of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-1β, IL-6, TNF-α, MMP-2, MMP-9, and MMP-13 in the synovia of knee joints. Conclusion: These results indicate that FJH-UBS exerts its anti-osteoarthritic effects by suppressing the expressions of inflammatory cytokines and MMPs and, thus, cartilage degradation. Furthermore, they suggest that FJH-UBS has potential use as a functional food that improves joint and cartilage health.

Anti-inflammatory effects of biorenovated Torreya nucifera extract in RAW264.7 cells induced by Cutibacterium acnes (여드름균에 의해 유도된 RAW264.7 세포에서 생물 전환된 비자나무 추출물의 항염증 효과)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Byeong Min Choi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.213-220
    • /
    • 2023
  • The most common skin disease, acne, often occurs in adolescence, but it is also detected/observed in adults due to air pollution and drug abuse. One of the causative agents of acne, Cutibacterium acnes (C. acnes) plays a role in the development of skin acne by inducing inflammatory mediators. Torreya nucifera (TN) is an evergreen tree of the family Taxaceae, having well reported antioxidant, anti-proliferative, liver protection, and nerve protection properties. Improvement of these bioactive properties of natural products is one of the purposes of natural product chemistry and pharmaceuticals. We believe biorenovation could be one improvement strategy that utilizes microbial metabolism to produce unique derivatives having enhanced bioactivity. Therefore, in this study, the C. acnes-induced RAW264.7 inflammation model was used to evaluate the anti-inflammatory activity of the biorenovated Torreya nucifera product (TNB). The results showed improved viability of TNB-treated cells compared to TN-treated cells in the concentration range of 50, 100, and 200 ㎍/mL. At non-toxic concentrations, TNB inhibited the production of nitric oxide and prostaglandin E2 by suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. TNB also attenuated the expression of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α induced by C. acnes. Furthermore, TNB inhibited the nuclear factor-κB signaling pathway, a transcription factor known to regulate inflammatory mediators. Based on these results, this study suggests the potential of using TNB as natural material for the treatment of acnes and thus, supporting our postulation of biorenovation as an bioactivity improvement strategy.

Anti-inflammatory Effect of Conditioned Medium From an Immortalized Adipose-derived Stem Cell Line by SV40 T Antigen (SV40의 T항원으로 불사화한 지방줄기세포주로부터 생산한 배양액의 항염증 효능)

  • Ye Jin Lee;So Yeong Lee;Min Gyeong Jeong;Seong Moon Park;Dong Wan Kim
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.170-178
    • /
    • 2024
  • Adipose-derived stem cells (ADSCs) are capable of differentiation into multiple lineages of cells, which has attracted attention for clinical therapy. However, ADSCs have poor proliferation capacity and a short life span in culture, which is an impediment in the application to clinical use. Previously, to overcome growth disadvantages, we had established an immortalized ADSC line (ADSC-T) by introducing the SV40 T antigen coding gene into primary human ADSC. In the present study, we evaluated the differentiation potential of this cell line and assessed the anti-inflammatory effect of its conditioned medium (CM). ADSC-T appeared to maintain the differentiation potential into adipocyte and chondrocyte. The CM of ADSC-T suppressed the NF-κB activity and its target gene expression of COX-2 and iNOS. Furthermore, the phosphorylations of MAPKs, including ERK, JNK and p38, were suppressed by the ADSC-T CM. The expressions of pro-inflammatory cytokines such as TGF-β, TNF-α, IL-6, and IL-13 were also suppressed by the CM of ADSC-T. In the Nc/Nga atopic model mice, the CM showed therapeutic effect on DNCB-induced atopic dermatitis. These results indicate that the immortalized ADSC-T maintains the beneficial properties of primary ADSC and could be a versatile cell source for not only research into ADSC but also for production of CM suitable for clinical application.

Neuroprotective Effect of Cyclosporin A on Spinal Cord Ischemic Injury in Rabbits (토끼를 이용한 척수 허혈 손상 모델에서 Cyclosporin A의 척수 손상에 대한 보호 효과)

  • Shin Yoon-Cheol;Choe Ghee-Young;Kim Won-Gon
    • Journal of Chest Surgery
    • /
    • v.39 no.10 s.267
    • /
    • pp.739-748
    • /
    • 2006
  • Background: The purpose of this study is to ascertain the neuroprotective effect of cyclosporin A on the 25-min surgical ischemia model in the spinal cords of rabbits with neuropathological correlation and histoimmunochemical analyses, Material and Method: Thirty-two New Zealand white rabbits were randomly divided into four groups: Rabbits were randomly divided into four groups: the control 12 group (n=8), the control 17 group (n=8), the cyclosporin Cs2 group (n=8), and the cyclosporin Cs7 group (n=8). The 12 group underwent a 25-min aortic cross- clamp without intervention and were sacrificed on the 2nd day postoperatively, while the 17 group underwent a 25- min of aortic cross-clamp without intervention and were sacrificed on the 7th day postoperatively. The Cs2 group received cyclosporin A (25 mg/kg) intravenously 15 min after the 25-min cross-clamp and were sacrificed on the End day postoperatively, while the Cs7 group received cyclosporin A (25 mg/kg) intravenously 15 min after the 25-min cross-clamp and were sacrificed on the 7th day postoperatively. The rabbits underwent 25-min surgical aortic cross-clamp. Neurologic functions were evaluated on the 2nd day and 7th postoperative day using Tarlov scoring system. After scoring neurologic function, all rabbits were sacrificed for histopathologic observation. Result: All rabbits survived the experimental procedure. The values of Tarlov score did not show any differences between the control and cyclosporin groups on the 2nd day. The scores of group Cs7 ($2.75{\pm}0.89$) were significantly higher than those of group 17 ($1.25{\pm}1.39$) on the 7th day (p<0,05). On the histologic exanminations, specimens of the spinal cord showed necrosis and apoptosis. The pathologic scores of group Cs7 ($1,0{\pm}0.53$) was less than those of group 17 ($2.13{\pm}1.36$, p<0.05). TUNEL staing showed apoptosis of the specimen in group 12 and Cs2 but there was no stastically significant difference between groups on the score. There were more overexpression of HSP70 and nNOS in cyclosporine group than in control group. Conclusion: We think that cyclosporin A may decrease neuronal cell death with induced upregulation of HSP70 against 25-min ischemia of the spiral cord in the rabbit.

Anti-Inflammatory Effect of Chondrus ocellatus Holmes Ethanol Extract on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포와 마우스모델에 대한 진두발 에탄올 추출물의 항염증 효과)

  • Bae, Nan-Young;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • This study aimed to investigate the anti-inflammatory effect of the ethanol extract from Chondrus ocellatus Holmes (COHEE) in RAW 264.7 cells and in a mouse ear edema model, by measuring the production of lipopolysaccharide-induced inflammatory response mediators. There were no cytotoxic effects on the proliferation of macrophages treated with COHEE compared with the control. COHEE inhibited the production of nitric oxide and pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β]. The extract also reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB p65, and phosphorylated mitogen-activated protein kinase in a dose-dependent manner. In the croton-oil-induced ear edema model, COHEE decreased the formation of mouse ear edema at the highest dose compared with the control, and histological analysis revealed that the epidermal/dermal tissue thickness and mast cell numbers were reduced. Therefore, these results suggest that COHEE may be a promising topical anti-inflammatory therapeutic material through its action of modulating NF-κB and the MAPK signaling pathway.

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.