DOI QR코드

DOI QR Code

Anti-inflammatory effects of biorenovated Torreya nucifera extract in RAW264.7 cells induced by Cutibacterium acnes

여드름균에 의해 유도된 RAW264.7 세포에서 생물 전환된 비자나무 추출물의 항염증 효과

  • Hyehyun Hong (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Tae-Jin Park (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Yu-Jung Lee (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Byeong Min Choi (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Seung-Young Kim (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
  • Received : 2023.03.31
  • Accepted : 2023.05.12
  • Published : 2023.12.31

Abstract

The most common skin disease, acne, often occurs in adolescence, but it is also detected/observed in adults due to air pollution and drug abuse. One of the causative agents of acne, Cutibacterium acnes (C. acnes) plays a role in the development of skin acne by inducing inflammatory mediators. Torreya nucifera (TN) is an evergreen tree of the family Taxaceae, having well reported antioxidant, anti-proliferative, liver protection, and nerve protection properties. Improvement of these bioactive properties of natural products is one of the purposes of natural product chemistry and pharmaceuticals. We believe biorenovation could be one improvement strategy that utilizes microbial metabolism to produce unique derivatives having enhanced bioactivity. Therefore, in this study, the C. acnes-induced RAW264.7 inflammation model was used to evaluate the anti-inflammatory activity of the biorenovated Torreya nucifera product (TNB). The results showed improved viability of TNB-treated cells compared to TN-treated cells in the concentration range of 50, 100, and 200 ㎍/mL. At non-toxic concentrations, TNB inhibited the production of nitric oxide and prostaglandin E2 by suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. TNB also attenuated the expression of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α induced by C. acnes. Furthermore, TNB inhibited the nuclear factor-κB signaling pathway, a transcription factor known to regulate inflammatory mediators. Based on these results, this study suggests the potential of using TNB as natural material for the treatment of acnes and thus, supporting our postulation of biorenovation as an bioactivity improvement strategy.

본 연구는 비자나무(Torreya nucifera (L.) Siebold & Zucc, TN)와 생물전환 된 비자나무 추출물(TNB)의 항염증 효과를 평가하기 위해 수행되었으며 이를 위해 C. acnes에 의해 유도된 RAW264.7 염증 모델에서 염증인자의 발현을 조사하였다. 실험 결과, TNB는 50, 100, 200 ㎍/mL 농도에서 TN의 높은 세포독성을 개선하였으며 nitric oxide (NO)와 NO 합성 효소인 inducible NO synthase (iNOS) 및 prostaglandin의 합성 효소인 cyclooxygenase-2 (COX-2)의 발현을 유의하게 억제하였다. 또한 TNB는 염증성 사이토카인인 tumor necrosis factor-α (TNF-α) 및 interleukin (IL)-1β, IL-6, IL-8의 발현을 유의하게 억제하였으며 특히 IL-6, IL-8의 경우 가장 고 농도인 200 ㎍/mL에서 정상세포 수준으로 감소하였다. 이후 진행된 western blot에서 인산화 된 IκB-α 및 NF-κB의 발현이 농도의존적으로 억제됨을 확인하였으며 인산화가 억제되면서 degradation이 감소하여 TNB처리 농도가 높아짐에 따라 IκB-α의 농도가 증가하는 경향을 보였다. 결론적으로, TNB는 NF-κB신호 전달 경로를 차단함으로써 다양한 염증 매개 인자의 발현을 효과적으로 하향 조절할 수 있으며 이를 통해 항 염증 활성을 유도하는 것으로 확인된다. 이러한 결과를 근거로 TNB가 C. acnes에 의해 유발된 염증성질환의 치료에 효과적인 천연물 소재로 적용될 수 있음을 제안한다.

Keywords

Acknowledgement

본 논문은 중소벤처기업부와 중소기업기술정보진흥원의 지역특화산업육성 +R&D 사업의 지원을 받아 수행된 연구결과입니다(S3270338).

References

  1. Omer H, McDowell A, Alexeyev OA (2017) Understanding the role of Propionibacterium acnes in acne vulgaris: The critical importance of skin sampling methodologies. Clin Dermatol 35(2): 118-129. doi: 10.1016/j.clindermatol.2016.10.003
  2. Park Y (2006) A study about control of gingivitis and plaque of dentifrice containing tranexamic acid and willow tree bark. J Korean Acad Dent Health 30(3): 271-279
  3. Suh DH, Kwon HH (2015) What's new in the physiopathology of acne? Br J Dermatol 1: 13-19. doi: 10.1111/bjd.13634
  4. Suh DH (2010) Pharmacologic treatment of acne. J Kor Med Assoc 53(7): 623-629. doi: 10.5124/jkma.2010.53.7.623
  5. Dessinioti C, Katsambas AD (2010) The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol 28(1): 2-7. doi: 10.1016/j.clindermatol.2009.03.012
  6. Thiboutot DM, Layton AM, Eady EA (2014) IL-17: a key player in the P. acnes inflammatory cascade? J Invest Dermatol 134(2): 307-310. doi: 10.1038/jid.2013.400
  7. Lee SJ, Lee EH, Shin JH, Kim SS, Kim NK, Choi E, Seo SR (2016) Eucalyptus globulus extracts inhibit Propionibacterium acnes-induced inflammation signaling. Korean J Microbiol 52(4): 421-427. doi: 10.7845/kjm.2016.6066
  8. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, Brightbill HD, Holland D, Cunliffe WJ, Akira S, Sieling PA, Godowski PJ, Modlin RL (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169(3): 1535-1541. doi: 10.4049/jimmunol.169.3.1535
  9. Jugeau S, Tenaud I, Knol AC, Jarrousse V, Quereux G, Khammari A, Dreno B (2005) Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol 153(6): 1105-1113. doi: 10.1111/j.1365-2133.2005.06933.x
  10. Farrar MD, Ingham E (2004) Acne: inflammation. Clin Dermatol 22(5): 380-384. doi: 10.1016/j.clindermatol.2004.03.006
  11. Grange PA, Raingeaud J, Calvez V, Dupin N (2009) Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-κB and MAPK pathways. J Dermatol Sci 56: 106-112. doi: 10.1016/j.jdermsci.2009.08.001
  12. Kang SW, Cho SY, Chung JH, Hammerberg C, Fisher JG, Voorhees JJ (2005) Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-kappaB and activator protein-1 in inflammatory acne lesions in vivo. Am J Pathol 166(6): 1691-1699. doi: 10.1016/s0002-9440(10)62479-0
  13. Yamamoto Y, Gaynor RB (2001) Role of the NF-kB pathway in the pathogenesis of human disease states. Curr Mol Med 1(3): 287-296. doi: 10.2174/1566524013363816
  14. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, Brightbill HD, Holland D, Cunliffe WJ, Akira S (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 169(3): 1535-1541. doi: 10.4049/jimmunol.169.3.1535
  15. Shin JH, Lee EH, Kim SS, Sydara K, Seo SR (2018) Cnestis palala (Lour.) Merr. extract suppresses Propionibacterium acnes-induced inflammation. Korean J Microbiol 54(1): 38-45. doi: 10.7845/kjm.2018.7092
  16. Kim SB, Kim BW, Hyun SK (2018) Comparison of antioxidant activities and effective compounds in Korean and Chinese Torreya seeds. JFST 50(3): 274-279. doi: 10.9721/KJFST.2018.50.3.274
  17. Jeon HS, Lee YS, Kim NW (2009) The Antioxidative Activities of Torreya nucifera Seed Extracts. J Korean Soc Food Sci Nutr 38(1): 1-8. doi: 10.3746/jkfn.2009.38.1.001
  18. Im HS, Yoon KR, Chung DH (1980) Studies on the lipid components of Torreya nucifera seed. Korean J Food Sic Technol 12: 324-327
  19. Joh YG, Kim KJ, Bark KS, Jeong TM (1981) Studies on the composition and chemical structure of desmethylsterols from Torreya nucifera seeds. Korean J Food Sci Technol 13: 127-132
  20. Ku JE, Park CH (2018) Research Trends in Effective Medicinal Plants for Acne. J Korean Soc Cosmetol 8 (3): 431-445
  21. Lee KM, Park TJ, Jie EY, Kim SW, Han DH, Kim SY (2021) Melanogenesis Inhibitory Effects of Phryma leptostachya Callus using Biorenovation in B16F10 Melanoma Cells. KSBB Journal 36(1): 42-48. doi: 10.7841/ksbbj.2021.36.1.42
  22. Hong HH, Lee KM, Park TJ, Chi WJ, Kim SY (2021) Anti-inflammatory effect of Distylium racemosum leaf biorenovate extract in LPS-stimulated RAW 264.7 macrophages cells. J Appl Biol Chem 64(4): 375-382. doi:10.3839/jabc.2021.051
  23. Park TJ, Sim JH, Hong HH, Han DH, Kim SY (2020) Anti-inflammatory Effect of Colocasia esculenta Biorenovate Extract in LPS-stimulated RAW 264.7 Cells. KSBB Journal 35(2): 162-168. doi: 10.7841/ksbbj.2020.35.2.162.9
  24. Choi HR, Park JS, Kim KM, Kim MS, Ko KW, Hyun CG, Ahn JW, Seo JH, Kim SY (2018) Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. Journal of Industrial and Engineering Chemistry 63: 255-261. doi: 10.1016/j.jiec.2018.02.023
  25. Kim KM, Park JS, Choi HR, Kim MS, Seo JH, Ramesh PP (2018) Biosynthesis of novel daidzein derivatives using Bacillus amyloliquefaciens whole cells. Biocatalysis and Biotransformation 36(6): 1-7. doi: 10.1080/10242422.2018.1461212
  26. Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacol 15(6): 252-259. doi: 10.1007/s10787-007-0013-x
  27. Kim HP, Yoon YG (2018) The protective effect of berberine on Propionibacterium acnes-induced inflammatory response in human monocytes. J Appl Biol Chem 61(2): 181-186. doi: 10.3839/jabc.2018.026
  28. Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L (2005) Distinct strains of Propionibacterium acnes induce selective human β-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124(5): 931-938. doi: 10.1111/j.0022-202X.2005.23705.x
  29. Qin M, Pirouz A, Kim MH, Krutzik SR, Garban HJ, Kim J (2014) Propionibacterium acnes induces IL-1β secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol 134(2): 381-388. doi: 10.1038/jid.2013.309