• Title/Summary/Keyword: NOAA/AVHRR SST

Search Result 46, Processing Time 0.027 seconds

The Relationship Between Phytoplankton Distribution and Environmental Conditions of the Upwelling Cold Water in the Eastern Coast of the Korean Peninsula (동해남부연안 냉수대 변동과 관련된 해양환경 및 식물플랑크톤의 변동 특성)

  • Oh, Hyun Ju;Suh, Young Sang;Heo, Seung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.166-173
    • /
    • 2004
  • By analyzing the sea surface temperature (SST), phytoplankton and NOAA/AVHRR satellite data of Gijang, located at the eastern coast of the korean peninsula during the period of 2001 to 2003, we have analyzed the daily variation in the upwelling cold water, phytoplankton, and chlorophyll a. The SST of Gijang coast appealed rapid change due to the temporal and spatial variation of the upwelling cold water. This in turn led to an increase in the number of phytoplanktons and other varieties of organisms inhabiting in the Gijang coastal region.

  • PDF

Activities for the Environmental Satellite Data Center at the Science University of Tokyo

  • Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.134-137
    • /
    • 1998
  • NOAA satellite data and GMS data have been received at the Institute of Industrial Science, University of Tokyo since early 80's and 1994, respectively. So far, all data are archived and users can look their quick look images through the Internet and get the data by request. The following processed data set will be available soon with the corporation with the Science University of Tokyo: Radiometrically corrected by 65 code and geometrically corrected NOAA data with the corporation with Iwate University and NDVI, SST and cloud classified images as their products. 1 km AVHRR Land Project Data Set of Asia and their 14 regional subsets. Geometrically corrected GMS images and surface temperature maps, sea surface temperature maps and cloud classification maps.

  • PDF

Temporal and Spatial Variations of SL/SST in the Korean Peninsula by Remote Sensing (원격탐사를 이용한 한반도 주변해역의 해수면/해수온의 시·공간변동 특성 연구)

  • Oh, Seung-Yeol;Jang, Seon-Woong;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.2
    • /
    • pp.333-345
    • /
    • 2012
  • NOAA/AVHRR, Topex/Poseidon, and Jason-1 data were used to analyze sea surface temperatures and thermal fronts in the North East Asia Seas. Temporal and spatial analyses were based on data from 1993 to 2008. The amplitude and phase for the annual mode on SL and SST were investigated with harmonic analysis. The geographical distribution of amplitudes for comparison of SL and SST are slightly reverse in southwest-northeast tilted direction. The time series analysis conducted on the entire researched area presented consistent pattern. Peak of Sea Level was presented 1~2 months after the peak of the surface sea temperature was shown. This explains that Sea Level change occurs after the generation of surface sea temperature change in sea. The Sobel edge detection method delineated four fronts. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas.

Climatological Variability of Satellite-derived Sea Surface Temperature and Chlorophyll in the South Sea of Korea and East China Sea (남해와 동중국해에서 위성으로 추정된 표층수온 및 클로로필의 장기 변화)

  • Son, Young-Baek;Ryu, Joo-Hyung;Noh, Jae-Hoon;Ju, Se-Jong;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.201-218
    • /
    • 2012
  • The purpose of this study is to investigate climatological variations from the sea surface temperature (SST), chlorophyll-a concentration (Chl-a), and phytoplankton size class (PSC), using NOAA AVHRR, SeaWiFS, and MODIS data in the South Sea of Korea (SSK) and East China Sea (ECS). 26-year monthly SST and 13-year monthly Chl-a and PSC data, separated by whole and nine-different areas, were used to understand seasonal and inter-annual variations. SST and Chl-a clearly showed seasonal variations: higher SST and Chl-a were observed during the summer and spring, and lower values occurred during the winter and summer. The annual and monthly SST over 26 years increased by $0.2{\sim}1.0^{\circ}C$. The annual and monthly Chl-a concentration over 13 years decreased by $0.2{\sim}1.1mg/m^3$. To determine more detailed spatial and temporal variations, we used the combined data with monthly SST, Chl-a, and PSC. Between 1998 and 2010, the inter-annual trend of Chl-a decreased, with decreasing micro- and nano-size plankton, and increasing pico-size plankton. In regional analysis, the west region of the study area was spatially and temporally correlated with the area dominated by decreasing micro-size plankton; while the east region was less sensitive to coastal and land effects, and was dominated by increasing pico-size plankton. This phenomenon is better related to one or more forcing factors: the increased stratification of ocean driven by changes occurring in spatial variations of the SST caused limited contributions of nutrients and changed marine ecosystems in the study area.

Seasonal Cycle of Sea Surface Temperature in the East Sea and its Dependence on Wind and Sea Ice

  • Park, Kyung-Ae;Chung, Jong-Yul;Kim, Kuh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.618-620
    • /
    • 2003
  • Harmonics of sea surface temperature (SST) in the East Sea and their possible causes are examined by analyzing NOAA/AVHRR data, SSM/I wind speeds, NSCAT wind vectors, and NCEP heat flux data. Detailed spatial structures of amplitudes and phases of the seasonal cycles and their contributions to the total variance of SST have quantitatively. The Subpolar front serves as a boundary between regions of high annual amplitudes (${\geq}$10$^{\circ}$C) in the cold continental region and low amplitudes (${\leq}$10$^{\circ}$C) in the Tsushima Warm Current region. The low phase center of annual cycle is located over a seamount at 132.2$^{\circ}$E, 41.7$^{\circ}$N south of Vladivostok. Semi-annual amplitudes are significantly large leaching over 20% of the annual amplitudes in the Tatarskiy Strait and along the continental shelf off Russian coast in fall and spring, but its forcings are substantially annual. We have shown that fall cooling is attributed by direct and local wind forcing, while spring cooling is remotely forced by cold waters from sea ices in the Tatarskiy Strait.

  • PDF

A case study of red tide detection around Korean waters using satellite remote sensing

  • Suh, Y.S.;Lee, N.K.;Jang, L.H.;Kim, H.G.;Hwang, J.D.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.654-655
    • /
    • 2003
  • Korea has experienced 10 a Cochlodinium polykrikoides red tide outbreaks during the last 10 years (1993-2002). The monitoring activities at National Fisheries Research and Development Institute (NFRDI) in Korea have been extended to all the coastal waters after the worst of fish killing by C. polykrikoides blooms in 1995. NFRDI is looking forward to finding out the feasibility of red tide detection around Korean waters using satellite remote sensing of NOAA/AVHRR, Orbview-2/SeaWiFS, IRS-P4/OCM and Terra/MODIS on real time base. In this study, we used several alternative methods including climatological analysis, spectral and optical methods which may offer a potential detection of the major species of red tide in Korean waters. The relationship between the distribution of SST and C. polykrikoides bloom areas was studied. In climatological analysis, NOAA, SeaWiFS, OCM satellite data in 20th and 26th August 2001 were chosen using the known C. polykrikoides red tide bloom area mapped by helicopter reconnaissance and ground observation. The 26th August, 2001 SeaWiFS chlorophyll a anomaly imageries against the imageries of non-occurring red tide for August 20, 2001 showed the areas C. polykrikoides occurred. The anomalies of chlorophyll a concentration from satellite data between before and after red tide outbreaks showed the similar distribution of C. polykrikoides red tide in 26th August, 2001. The distribution of the difference in SST between daytime and nighttime also showed the possibility of red tide detection. We used corrected vegetation index (CVI) to detect floating vegetation and submerged vegetation containing algal blooms. The simple result of optical absorption from C. polykrikoides showed that if we use the optical characteristics of each red tide we will be able to get the feasibility of the red tide detection.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Variations of catch of Anchovy and Saury due to oceanic climate change in the Korean seas (해양기후변화에 의한 한국주변 해역에서 멸치와 꽁치의 어장 변화 연구)

  • Oh, Seung-Yeol;Jang, Sun-Woong;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.740-746
    • /
    • 2011
  • The variations of catch of anchovy and saury due to oceanic climate change in the Korean Seas were studied. This study area was $31^{\circ}{\sim}38^{\circ}$ N and $124^{\circ}{\sim}132^{\circ}$ E. And data (seawater temperature, salinity, dissolved oxygen) is used from NFRDI (National Fisheries Research and Development Institute) and SST (Sea Surface temperature) obtained to satellite images (NOAA/AVHRR) during 2000 to 2009. The spatial characteristics are analyzed by GIS (Geographic Information System). The results showed that the average of seawater temperature in the depth of 20m increased $1.45^{\circ}C$ in the South Sea and $0.83^{\circ}C$ in the East Sea, respectively. The maximal catch of anchovy was highest in summer (July~September) and winter (December~March), respectively, in compared with spring (April~June). Catch of anchovy has increased since 2000. The maximal catch of saury was highest in spring (May~June), in compared with spring (August~September). The increment of seawater temperature contributed to increase the catch of anchovy, but catch of saury was decrease in the same times.

Long-term Trend Analysis of Cold Waters along the Eastern Coast of South Korea (동해 냉수대 발생역의 장기 변동 분석)

  • Kim, Ju-Yeon;Han, In-Seong;Ahn, Ji-Suk;Park, Myung-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • A long-term trend analysis of cold water masses along eastern coast of South Korea was performed during summer, based on wind speed, wind direction, and sea surface temperature (SST) data. Wind data collected over a 22-year period (1997-2011) were compared with another set of data collected over the successive 7-year (2012-2018), highlighting a general decrease in the frequency and speed of south winds. However, both the frequency and speed of these winds have been higher in June between 2012-2018, rather than between 1997-2011. The cold water season between July and August was faster during the 7-year period; moreover, the SSTs registered around Gangneung (EN) rose by $0.5^{\circ}C- 1.8^{\circ}C$, while those around Yeongdeok (EC) and Gijang (ES) increased by only $0.1^{\circ}C-0.3^{\circ}C$. The number of cold water days during the 7-year period, compared to those recorded during previous years (1990-2011, satellite SST data by NOAA/AVHRR), decreased in the proximity of Yeongdeok and Gijang, but increased in the proximity of Kangneung. Additionally, the number of cold water days around Kangneung, Yeongdeok, and Gijang increased in June highlighting a geographical and temporal change in the occurrence of cold waters. These observation can be explained by variations in the pressure distribution that should have weakened the East Asian monsoon, affecting the direction and speed of winds that regulate the flow of cold waters.