• Title/Summary/Keyword: NO production inhibitory effect

Search Result 660, Processing Time 0.023 seconds

The Comparative Study of Anti-inflammation and Anti-oxidation in Accodance with Extraction Solvents of Jeondo-san (전도산(顚倒散)의 추출용매에 따른 항염 및 항산화 비교 연구)

  • Seo, Hyung-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.2
    • /
    • pp.69-80
    • /
    • 2010
  • Objective : The purpose of this study was to compare anti-Inflammation and anti-oxidation of Jeondo-San(JDS) extracted with two kinds of solvents, ethanol and water. Methods : Two kinds of JDS extractions were prepared 20, 50, $100\;{\mu}g/mg$. The Cytotoxicity was measured by MTT assay in Raw 264.7 cell. The anti-inflammation effects were measured by inhibitory efficacy on $PGE_2$, NO, TNF-$\alpha$, COX-2 and iNOS in Raw 264.7 cell. The anti-oxidation effects were measured by ROS inhibitory efficacy, intracellular GSH synthesis and DPPH Radical scavenging in HaCaT cell. Results : 1. All of JDS extraction groups had no cytotoxicity in Raw 264.7 cell. 2. All of JDS extraction groups showed significantly inhibitory effect on production of $PGE_2$. Inhibitory efficacy increased in accodance with concentration. 3. All of JDS extraction groups showed significantly inhibitory effect on production of NO. Inhibitory efficacy increased in accodance with concentration. 4. All of JDS extraction groups did not show significantly inhibitory effect on production of TNF-$\alpha$. 5. $100\;{\mu}g/ml$ JDS extracted with ethanol and $50\;{\mu}g/ml$, $100\;{\mu}g/ml$ JDS extracted with water showed inhibitory effect on iNOS expression. 6. All of JDS extraction groups showed significantly inhibitory effect on production of ROS. Inhibitory efficacy increased in accodance with concentration. Ethanol extractions were better than water extractions. 7. $100\;{\mu}g/ml$ JDS extracted with ethanol only produced GSH of $32{\pm}5.2%$. 8. All of JDS extraction groups showed significantly scavenging effect of DPPH radicals. Inhibitory efficacy increased in accodance with concentration. Ethanol extractions were better than water extractions. Conclusion : Two kinds of JDS extractions have not cytotoxicity and inhibit production of NO. JDS extracted with water was effective in anti-inflammation, JDS extracted with ethanol was effective in anti-oxidation.

Suppression Effect of Curcuma longa Rhizome-Derived Components against Nitric Oxide Synthase

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.212-215
    • /
    • 2009
  • The inhibitory effects of Curcuma longa rhizome-derived materials against nitric oxide (NO) production were assessed. The inhibitory effect (57%) on NO production was evidenced by the methanol extract of C. longa at $1\;{\mu}g/mL$. In the fractionation of the methanol extract, the ethyl acetate fraction evidenced an inhibitory effect greater than 62.1% at $1\;{\mu}g/mL$. The active constituent was identified as curcumin. Curcumin exerted potent inhibitory effects of 78.7 and 65.7% at concentrations of 1 and $0.5\;{\mu}g/mL$, respectively. Furthermore, the inhibitory effect of ar-turmerone was measured as 31.3 and 15.8% at 1 and $0.5\;{\mu}g/mL$, respectively. The iNOS expression-suppressive effects of curcumin were assessed via western blot analysis. Our results suggest that curcumin and ar-turmerone may prove useful in the development of new types of NO inhibitors.

Nitric Oxide Production and Elastase Inhibitory Activities of Extract and Its Fraction from Phellodendri Cortex (황백추출물 및 분획물의 Nitric Oxide 생성 억제 효과 및 Elastase 억제 효과)

  • Um, Ji Na;Min, Jin Woo;Joo, Kwang Sik;Kang, Hee Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • Background: To date, the anti-wrinkle efficacy of phellodendri cortex has not been defined. In this study, we investigated the nitric oxide (NO) production and elastase inhibitory activities of 80% methanol extract of Phellodendri cortex and its ethyl acetate fraction. Methods and Results: We prepared 80% methanol extract, and its fractions from phellodendri cortex. The treatment of RAW 264.7 cell with $25{\mu}g/m{\ell}$ 80% methanol extract and ethyl acetate fraction resulted in no toxicity. We conducted assays of nitric oxide (NO) production and elastase inhibition. In the NO production assay, the ethyl acetate fraction showed an inhibitory effect approximately 17 times stronger than the 80% methanol extract. In elastase inhibitory assay, the ethyl acetate fraction also showed a stronger effect than the 80% methanol extract. In order to standardize the extract and fraction, we used TLC to separate the extract and observed the plate under UV light. We confirmed that the known pharmacological ingredients berberine, and palmatine in the 80% methanol extract and the ethyl acetate fraction. Conclusions: These results indicated that phellodendri cortex extract and its ethyl acetate fraction produced strong inhibitory effect on elastase and NO production.

Effect of Five Korean Native Taraxacum on Antioxidant Activity and Nitric Oxide Production Inhibitory Activity (국내 자생 민들레 5종의 항산화 활성 및 Nitric Oxide 생성억제 활성)

  • Choi, Kyeong Hee;Nam, Hyeon Hwa;Choo, Byung Kil
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.3
    • /
    • pp.191-196
    • /
    • 2013
  • The effect on the antioxidant activity and Nitric Oxide activity production inhibitory activity of Taraxacum has not been known. Therefore, phenolics and flavonoid contents were investigated from the ethanol extracts of five different Taraxacum species. The results showed that, among the five Taraxacum, T. hallaisanensis contains the highest total phenolic and flavonoid contents. When the antioxidant activity was measured by DPPH, $ABTS^+$ and reducing power activity, the free radical scavenging activity of T. hallaisanensis was also the highest among five Taraxacum species. However, measurement by CCK-8 assay in Raw264.7 cells indicated that the extracts of Taraxacum species have no effect on cell viability. Moreover, we also investigated the effect of Taraxacum species on NO scavenging activity in lipopolysaccharide (LPS)-stimulated Raw264.7 cells. The results clearly showed that Taraxacum species inhibited NO production, and the inhibitory effect of T. hallaisanensis was the strongest. The above results suggested that Taraxacum species affected the antioxidant and NO scavenging activity, and among the five species, antioxidant and NO scavenging activity assay of T. hallaisanensis was significantly higher than those of other four Taraxacum species. Therefore, T. hallaisanensis could be used as a potential drug with anti-oxidant and anti-inflammatory effect.

Biological Activities of the Water Extract and its Fractions from Taraxacum coreanum Nakai (흰민들레 열수 추출물 및 분획물의 피부 관련 생리활성)

  • Lee, Kyoung-In;Im, Do-Youn
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • In this study, we investigated on antioxidative activity, tyrosinase inhibitory activity and nitric oxide(NO) production inhibitory activity in the hot water extract of Taraxacum coreanum and its fractions. The total polyphenol and flavonoid contents of the extract were found to be 65.42 mg/g and 9.83 mg/g, respectively. And the total polyphenol and flavonoid contents of the ethyl acetate fraction were found to be 168.23 mg/g and 31.92 mg/g, respectively. In DPPH radical scavenging ability, $SC_{50}$ values of the ethyl acetate and butanol fraction were exhibited 64.65 ${\mu}g/ml$ and 277.42 ${\mu}g/ml$, respectively. Moreover, ethyl acetate fraction showed higher inhibitory activity than other samples in tyrosinase inhibitory activity. In NO production inhibitory activity, the extract and its fractions showed NO production inhibitory effect. Especially, the ethyl acetate, chloroform and butanol fraction was exhibited higher NO production inhibitory activity than other samples. As a result, the ethyl acetate and butanol fraction from the water extract of T. coreanum could be applicable to functional materials for skin-related fields.

Regulatory Effect of 25-hydroxyvitamin $D_3$ on Nitric Oxide Production in Activated Microglia

  • Hur, Jinyoung;Lee, Pyeongjae;Kim, Mi Jung;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.397-402
    • /
    • 2014
  • Microglia are activated by inflammatory and pathophysiological stimuli in neurodegenerative diseases, and activated microglia induce neuronal damage by releasing cytotoxic factors like nitric oxide (NO). Activated microglia synthesize a significant amount of vitamin $D_3$ in the rat brain, and vitamin $D_3$ has an inhibitory effect on activated microglia. To investigate the possible role of vitamin $D_3$ as a negative regulator of activated microglia, we examined the effect of 25-hydroxyvitamin $D_3$ on NO production of lipopolysaccharide (LPS)-stimulated microglia. Treatment with LPS increased the production of NO in primary cultured and BV2 microglial cells. Treatment with 25-hydroxyvitamin $D_3$ inhibited the generation of NO in LPS-activated primary microglia and BV2 cells. In addition to NO production, expression of 1-${\alpha}$-hydroxylase and the vitamin D receptor (VDR) was also upregulated in LPS-stimulated primary and BV2 microglia. When BV2 cells were transfected with 1-${\alpha}$-hydroxylase siRNA or VDR siRNA, the inhibitory effect of 25-hydroxyvitamin $D_3$ on activated BV2 cells was suppressed. 25-Hydroxyvitamin $D_3$ also inhibited the increased phosphorylation of p38 seen in LPS-activated BV2 cells, and this inhibition was blocked by VDR siRNA. The present study shows that 25-hydroxyvitamin $D_3$ inhibits NO production in LPS-activated microglia through the mediation of LPS-induced 1-${\alpha}$-hydroxylase. This study also shows that the inhibitory effect of 25-hydroxyvitamin $D_3$ on NO production might be exerted by inhibiting LPS-induced phosphorylation of p38 through the mediation of VDR signaling. These results suggest that vitamin $D_3$ might have an important role in the negative regulation of microglial activation.

Thieny/Furanyl-hydroxyphenylpropenones as Inhibitors of LPS-induced ROS and NO Production in RAW 264.7 Macrophages, and Their Structure-Activity Relationship Study

  • Kadayat, Tara Man;Kim, Mi Jin;Nam, Tae-Gyu;Park, Pil-Hoon;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2481-2486
    • /
    • 2014
  • Twelve thienyl/furanyl-hydroxyphenylpropenones were systematically designed and synthesized, and evaluated for their inhibitory effect on LPS-induced ROS and NO production in RAW 264.7 macrophages. Compound 11 displayed the most significant inhibitory activity of LPS-induced ROS and NO production in RAW 264.7 macrophages. Structure-activity relationship study indicated that para-hydroxyphenyl moiety plays an important role for inhibitory activities on both LPS-induced ROS and NO production as well as 3-thienyl moiety on molecule.

Inhibitory effect of epigallocatechin from Camellia sinensis leaves against pro-inflammatory mediator release in macrophages

  • Cho, Jun-Hyo;Hong, Eun-Jin;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • To investigate the anti-inflammatory activity of natural products, we determined the anti-inflammatory activity of purified epigallocatechin (EGC) from Camellia sinensis leaves. In the present study, we found that EGC inhibited the production of proinflammatory mediators (IL-6, TNF-${\alpha}$, NO, and $PGE_2$) in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Suppression of IL-6 seems to be at least partly attributable to the inhibitory effect of EGC. TNF-${\alpha}$ is a major cytokine produced by LPS-induced macrophages, and they have a wide variety of biological functions including regulation of inflammation. The inhibition of IL-6 and TNF-${\alpha}$ production by EGC may downregulate the acute-phase response to LPS, thereby reducing LPS-induced inflammation. In addition to IL-6 and TNF-${\alpha}$, EGC effectively reduced the production of other key inflammatory mediators, including NO and $PGE_2$. The inhibitory effect of EGC on NO and $PGE_2$ production was supported by the suppression of inducible nitric oxide synthase and COX-2 at protein levels. These results support the traditional use of EGC in the alleviation of various inflammation-associated diseases and suggest that EGC might be useful in the development of new functional foods for inflammatory diseases.

Inhibitory effect of Koreinsis chinensis leaves extract on proinflammatory responses in lipopolysaccharide-induced Raw 264.7 cells (Lipopolysaccharide로 유도된 Raw 264.7 cell에서 잣 잎(Koreinsis chinensis L.) 추출물의 Pro-inflammatory 억제 효과)

  • Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Hyaluronidase inhibitory activity as inflammatory factor of Koreinsis chinensis leaf ethanol extract was showed higher inhibitory activity than water extract. 29.5% inhibitory activity was shown at concentration of $200{\mu}g/mL$ phenolics. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations ($5-25{\mu}g/mL$) of Koreinsis chinensis leaf extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 3 times more NO than non-LPS treated cells. Moreover, the NO production in cells treated with Koreinsis chinensis leaf extract showed inhibitory effect in a concentration-dependent manner. Due to the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we determined the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. It was reduced by 40% with a Koreinsis chinensis leaf extract concentration of $25{\mu}g/mL$ and identified iNOS inhibition in dose-dependent manner. The prostaglandin $E_2$ production in cells treated with Koreinsis chinensis leaf extract was reduced by 26.2% at concentration of $25{\mu}g/mL$. The protein expression of cyclooxygenase-2 in LPS-treated Raw 264.7 cells was inhibited by 64% at $25{\mu}g/mL$ of Koreinsis chinensis leaf extract. Koreinsis chinensis leaf extract had a concentration-dependent inhibitory effect on the production of tumor necrosis factor-${\alpha}$ and interleukin-6 as pro-inflammatory cytokine in LPS-treated Raw 264.7 cells at $25{\mu}g/mL$ of Koreinsis chinensis leaf extract. Their levels were decreased by 61.7 and 62% respectively.

Inhibitory Effect of Coumarins on Nitric Oxide Production in LPS-Activated Murine Macrophages (쿠마린에 의한 RAW 264.7 세포주의 Nitric Oxide 생성 저해활성)

  • Rho, Tae-Cheol;Choi, Hee-Cheol;Kim, Bo-Yeon;Kim, Young-Ho;Ahn, Jong-Seog;Kim, Young-Kook;Lee, Hyun-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.413-416
    • /
    • 1999
  • During the screening for inhibitors on nitric oxide (NO) production in LPS-activated murine macrophage, RAW 264.7 cells, two coumarins were isolated from chloroform extract of Ponciri Fructus. They were identified as imperatorin (10), phellopterin (11) on the basis of spectroscopic methods. The $IC_{50}$ values for NO formatiom were about $5.4\;{\um}M$ and $35.0\;{\um}M$, respectively, and then eleven coumarins were tested for the inhibitory effects on NO production in activated macrophages. All the test coumarins inhibited NO production in concentration-dependent manner and furanocoumarins (6-11) showed much more potent inhibitory effect than simple coumarins. Among the compounds examined xanthotoxin (8) was the most potent inhibitors of NO production $(IC_{50}=1.4\;{\mu}M)$. Analysis of the structure-activity relationship among these coumarins led to the conclusion that the substitution of C-5 position in furanocoumarins reduces greatly their inhibitory potency although the substitution of C-8 does not almost affect it.

  • PDF