• Title/Summary/Keyword: NO production inhibitors

Search Result 125, Processing Time 0.021 seconds

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages (고량강으로부터 분리된 galangin의 RAW 264.7 세포주에서 LPS로 유도된 nitric oxide 생성 저해활성)

  • Lee, Hwa Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.511-515
    • /
    • 2014
  • In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.

Effects of Fucoidan on Neuronal Cell Proliferation: Association with NO Production through the iNOS Pathway

  • Lee, Hye-Rim;Do, Hang;Lee, Sung-Ryul;Sohn, Eun-Soo;Pyo, Suhk-Neung;Son, Eun-Wha
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.2
    • /
    • pp.74-78
    • /
    • 2007
  • Fucoidan, that is high-molecular-weight sulfated polysaccharides extracted from brown seaweeds has been shown to elicit various biological activities. Here, we investigated the effects of fucoidan on cell proliferation and nitric oxide (NO) production in neuronal blastoma cell (SH-SY5Y). In the present study, we demonstrated that fucoidan treatment resulted in increase of cell proliferation and NO production. When cells were treated with amyloid-${\beta}$ (A${\beta}$) in the absence or presence of fucoidan, fucoidan recovered the cell viability decreased by A${\beta}$ peptides. To further determine whether nitric oxide synthase (NOS) is involved in proliferative effect of fucoidan, cells were treated with NOS inhibitors in the absence or presence of fucoidan. Selective constitutive nitric oxide synthase (cNOS) inhibitor, diphenylene iodonium chloride (DPI), caused a decrease of cell viability, whereas cell viability was increased by specific inducible nitric oxide synthase (iNOS) inhibitor, S-methylisothiourea (SMT), in the fucoidan-untreated cells. Treatment with fucoidan inhibited the cell viability decreased in DPI-exposed cells. In contrast, fucoidan had no effect on cell growth in SMT-treated cells, indicating that cNOS may not play a role in the proliferation of fucoidan-treated cells. The present data suggest that fucoidan has proliferative and neuroprotective effects and these effects may be associated with iNOS.

Conservation of gilt bronze locks (Treasure No. 1141) excavated from Hancheonsa temple (보물 제1141호 한천사 출토 금동자물쇠 보존처리)

  • Go, Hyeong-Sun;Yu, Jae-Eun;Lee, Jae-Seong
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.149-162
    • /
    • 2002
  • Gilt bronze locks(Treasure No. 1141) excavated from Hancheonsa temple are artifacts of Goryeo Dynasty. The locks underwent a conservation process from October 2001 to July 2002. The process included cleaning and the application of corrosion inhibitors, Benzotriazolesolution, as well as reinforcement treatment with Paraloid NAD-10 solution,an acrylic resin. Non-destructive XRF analysis unveil that the artifacts are made of an alloy of copper(Cu), tin(Sn) and lead(Pb), but the gilt layer is too thin to analyze the purity of the gold or the exact production method. Gilt bronze locks are important materials because they preserve all the structures of locks in Goryeo Dynasty to the smallest detail. The surface pattern is revealed through the conservation process and components of the alloy through material analysis.

  • PDF

Suppressive effects on the expression of cyclooxygenase-2 and inducible nitric oxide synthase by a natural sesquiterpenoid in lipopolysaccharide-stimulated mouse macrophage cells

  • Min, Hye-Young;Park, Hyen-Joo;Park, Eun-Jung;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.101-101
    • /
    • 2003
  • Prostaglandins (PGs) and nitric oxide (NO) produced by inducible cyclooygenase (COX-2) and nitric oxide synthase (iNOS), respectively, have been implicated as important mediators in the process of inflammation and carcinogenesis. On this line, the potential COX-2 or iNOS inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. In our continuing efforts of searching for novel cancer chemopreventive agents from natural products, we isolated natural sesquiterpenoids as potential COX-2 and iNOS inhibitors in cultured lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells. Alantolactone, a natural eudesmane-type sesquiterpenoid, exhibited a potent inhibition of COX-2 (IC50 = 0.4 $\mu\textrm{g}$/$m\ell$) and iNOS activity (IC50 = 0.08 $\mu\textrm{g}$/$m\ell$) in the assay system determined by PGE2 and NO accumulation, respectively. The inhibitory potential of alantolactone on the PGE2 and NO production was well coincided with the suppression of COX-2 and iNOS protein and mRNA expression in LPS-induced macrophages. Furthermore, alantolactone inhibited NF-kB but not AP-l binding activity on nuclear extracts evoked by LPS-stimulated macrophage cells, suggesting the possible involvement of NF-kB in the regulation of COX-2 and iNOS expression. In further study with COX-2-expressing human colon HT-29 cells, alantolactone inhibited the cell proliferation, down-regulated COX-2, and inhibited the ERK phosphorylation in the early time. These results suggest that a natural sesquiterpenoid alantolactone might be a potential lead candidate for further developing COX-2 or iNOS inhibitor possessing cancer chemopreventive or anti-inflammatory activity

  • PDF

Depression of $Ca^{2+}$ Influx in Complement C5a-stimulated Neutrophils by Calmodulin Inhibitors

  • Ham, Dong-Suk;Kim, Hyun-Ho;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.109-117
    • /
    • 1998
  • Role of $Ca^{2+}$/calmodulin complex in intracellular $Ca^{2+}$ mobilization in neutrophils has not been clearly elucidated. In this study, effects of chlorpromazine, trifluoperazine and imipramine on the intracellular $Ca^{2+}$ mobilization, including $Ca^{2+}$ influx, in C5a-activated neutrophils were investigated. Complement C5a- stimulated superoxide production and myeloperoxidase release in neutrophils were inhibited by chlorpromazine, trifluoperazine and imipramine, except no effect of imipramine on myeloperoxidase release. A C5a-elicited elevation of [$Ca^{2+}$]i in neutrophils was inhibited by chlopromazine, trifluoperazine, imipramine, staurosporine, genistein, EGTA, and verapamil but not affected by pertussis toxin. The intracellular $Ca^{2+}$ release in C5a-activated neutrophils was not affected by chlorpromazine and imipramine. Chlorpromazine and imipramine inhibited $Mn^{2+}$ influx by C5a-activated neutrophils. Thapsigargin-evoked $Ca^{2+}$ entry was inhibited by chlorpromazine, trifluoperazine, imipramine, genistein, EGTA and verapamil, while the effect of staurosporine was not detected. The results suggest that $Ca^{2+}$/calmodulin complex is involved in the activation process of neutrophils. The depressive action of calmodulin inhibitors on the elevation of cytosolic $Ca^{2+}$ level in C5a-activated neutrophils appears to be accomplished by inhibition of $Ca^{2+}$ influx from the extracellular medium.

  • PDF

Characterization of $ET_B$ Receptor-mediated Relaxation in Precontracted Mesenteric Artery from Streptozotocin-induced Diabetic Rats

  • Eom, Yang-Ki;Kim, Koan-Hoi;Rhim, Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.305-314
    • /
    • 2005
  • Diabetes mellitus is associated with vascular complications, including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive substances in various vasculature. In the present study, the authors have observed endothelin-B ($ET_B$) receptor agonist-induced relaxation in precontracted mesenteric arterial segments from streptozotocin (STZ)-induced diabetic rats, which was not shown from control rats or in other arterial segments from diabetic rats. Accordingly, the goal of this study was to investigate in what way STZ-induced diabetes altered reactivity of the mesenteric arterial bed and to examine the causal relaxation, if any, between this $ET_B$ receptor-mediated relaxation and endothelial paracrine function, especially nitric oxide (NO) production. The relaxation induced by $ET_B$ agonists was not observed in mesenteric arteries without endothelium. The relaxation to $ET_B$ agonists was completely abolished by pretreatment with BQ788, but not by BQ610. $N_{\omega}-nitro-L-arginine$ methyl ester and soluble guanylate cyclase inhibitors, methylene blue or LY83583 significantly attenuated the relaxant responses to $ET_B$ agonists, respectively. When the expression of eNOS and iNOS was evaluated on agarose gel stained with ethidium bromide, the expression of eNOS mRNA in diabetic rats was significantly decreased, but the expression of iNOS was increased compared with control rats. Furthermore, the iNOS-like immunostaining was densely detected in the endothelium and slightly in the arterial smooth muscle of diabetic rats, but not in control rats. These observations suggest that $ET_B$ receptor may not play a role in maintaining mesenteric vascular tone in normal situation. However, the alterations in $ET_B$ receptor sensitivity were found in diabetic rats and lead to the $ET_B$ agonist-induced vasorelaxation, which is closely related to NO production. In the state of increased vascular resistance of diabetic mesenteric vascular bed, enhanced NO production by activation of iNOS could lead to compensatory vasorelaxation to modulate adequate perfusion pressure to splanchnic area.

Molecular Mechanism of NO-induced Cell Death of PC12 Cells by $IFN{\gamma}\;and\;TNF{\alpha}$

  • Yi, Seh-Yoon;Han, Seon-Kyu;Lee, Jee-Yeon;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • Nitric oxide (NO) is a small, diffusible, and highly reactive molecule, which plays dichotomous regulatory roles under physiological and pathological conditions. NO promotes apoptosis in some cells, and inhibits apoptosis in other cells. In the present study, we attempted to characterize the NO signaling pathway and cellular response in PC12 cells treated with cytokines. $IFN{\gamma}\;and\;TNF{\alpha}$ treatment resulted in a synergistic increase of nitrite accumulation, with the induction of inducible nitric oxide synthase (iNOS) in the PC12 cells. Moreover, as nitrite concentration increased, cell viability decreased. In order to explore MAP kinase involvement in nitric oxide production resultant from $IFN{\gamma}\;and\;TNF{\alpha}$ stimulation, we measured the activation of MAP kinase using specific MAP kinase inhibitors. PC12 cells pretreated with SB203580, a p38 MAP kinase-specific inhibitor, resulted in the inhibition of iNOS expression and NO production. However, PD98059, an ERK/MAP kinase-specific inhibitor, was not observed to exert such an effect. In addition, Stat1 activated by $IFN{\gamma}\;and\;TNF{\alpha}$ was interacted with p38 MAPK. These data suggest that p38 MAP kinase mediates cytokine-mediated iNOS expression in the PC12 cells, and Jak/Stat pathway interferes with p38 MAPK signaling pathway.

Effects of Serum on Nitric Oxide Production in Embryonic Mouse Liver Cell Line BNL CL.2 (혈청이 마우스 간 세포주 BNL CL.2의 Nitric Oxide 생성에 미치는 영향)

  • 김유현;김신무;배현옥;유지창;정헌택;진효상
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Nitric oxide (NO) plays an important role in immunologic defense, and influences upon the functioning of secretory tissues and cells. It also exhibits cytotoxic/cytostatic activity as one of major operating effectors of the cellular immunity system. We investigated the effects of serum on the cell damages and NO production in the mouse liver cell line BNL CL.2 to establish the role of NO. We observed that, when BNL CL.2 cells were cultured in serum-free medium, they were induced to cell damage by the stimulation of IFN-$\gamma$ alone or IFN-$\gamma$ plus LPS. Serum-starved cells showed large amount of nitrite accumulation and NO synthase (NOS) expression in response to IFN-$\gamma$ alone in dose- and time- dependent manners, but serum-supplied cells did not The production of NO was blocked by protein tyrosine kinase (PTK) inhibitors, genistein and herbimycin. These results suggest that the deprivation of serum in the BNL CL.2 cell culture medium might primed with the cells to produce NO when the cells are triggered by IFN-$\gamma$ and the involvement of PTK signal transduction pathway in the expression of NOS gene in murine hepatocytes.

  • PDF

Proinflammatory Cytokine and Nitric Oxide Production by Human Macrophages Stimulated with Trichomonas vaginalis

  • Han, Ik-Hwan;Goo, Sung-Young;Park, Soon-Jung;Hwang, Se-Jin;Kim, Yong-Seok;Yang, Michael Sungwoo;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.205-212
    • /
    • 2009
  • Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis Iysates increased proinflammatory cytokines, such as TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by HMDM. The involvement of nuclear factor (NF)-${\kappa}B$ signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-${\kappa}B$. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-${\kappa}B$ activation and TNF-${\alpha}$ production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-${\kappa}B$ inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-${\alpha}$. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-${\alpha}$, and NO. In particular, we showed that T. vaginalis induced TNF-${\alpha}$ production in macrophages through NO-dependent activation of NF-${\kappa}B$, which might be closely involved in inflammation caused by T. vaginalis.

Anti-tumor Activity of Saponin Fraction of Platycodon gradiflourm through Immunomodulatory Effects associated with NO production in RAW264.7 cells (길경 사포닌 분획의 NO생성과 관련된 면역조절작용을 통한 대식세포의 항암활성에 미치는 효과)

  • Choung, Myoung-Gun;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.557-563
    • /
    • 2011
  • Platycodon grandiflorum (Korean name, Doraji) has been widely used in traditional herbal medicine as an expectorant for pulmonary disease and a remedy for respiratory disorders in Asia. Here, we investigated the effects of BtOH extract saponin fraction of P. gradiflourm (PGS) on phagocytosis and anti-tumor activity with related cytokine productions in RAW264.7 macrophage cells. The results showed that PGS increased phagocytosis, anti-tumor activity, TNF-${\alpha}$ and nitric oxide (NO) production without direct tumor cell cytotoxicity. To further investigate whether NO is involved in anti-tumor and phagocytic activities of PGS, cells were co-treated with specific iNOS inhibitors, L-NIL (N6-(1-iminoethyl)-L-lysine, dihydrochloride), to block NO production. PGS decreased anti-tumor activity in L-NIL-treated cells, whereas phagocytic activity was not inhibited under the same conditions, indicating that the anti-tumor activity by PGS appears to be conducted by NO. These findings suggest that P. grandiflorum could be used a potential nutrition therapeutic agent for cancer patients.