DOI QR코드

DOI QR Code

Anti-tumor Activity of Saponin Fraction of Platycodon gradiflourm through Immunomodulatory Effects associated with NO production in RAW264.7 cells

길경 사포닌 분획의 NO생성과 관련된 면역조절작용을 통한 대식세포의 항암활성에 미치는 효과

  • Choung, Myoung-Gun (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Sohn, Eun-Hwa (Department of Herbal Medicine Resource, Kangwon National University)
  • 정명근 (강원대학교 생약자원개발학과) ;
  • 손은화 (강원대학교 생약자원개발학과)
  • Received : 2011.07.04
  • Accepted : 2011.09.14
  • Published : 2011.10.31

Abstract

Platycodon grandiflorum (Korean name, Doraji) has been widely used in traditional herbal medicine as an expectorant for pulmonary disease and a remedy for respiratory disorders in Asia. Here, we investigated the effects of BtOH extract saponin fraction of P. gradiflourm (PGS) on phagocytosis and anti-tumor activity with related cytokine productions in RAW264.7 macrophage cells. The results showed that PGS increased phagocytosis, anti-tumor activity, TNF-${\alpha}$ and nitric oxide (NO) production without direct tumor cell cytotoxicity. To further investigate whether NO is involved in anti-tumor and phagocytic activities of PGS, cells were co-treated with specific iNOS inhibitors, L-NIL (N6-(1-iminoethyl)-L-lysine, dihydrochloride), to block NO production. PGS decreased anti-tumor activity in L-NIL-treated cells, whereas phagocytic activity was not inhibited under the same conditions, indicating that the anti-tumor activity by PGS appears to be conducted by NO. These findings suggest that P. grandiflorum could be used a potential nutrition therapeutic agent for cancer patients.

본 연구는 길경 사포닌 추출물(PGS)를 이용하여 대식세포의 면역조절능력을 평가하였으며, 탐식작용, 항암작용, 항염증 작용에 모두 유의적인 효과를 나타내었다. 특히, 본 연구에서는 농도의존적으로 매우 유의적이게 나타난 PGS의 항암작용 기전을 측정하기 위하여 암세포 독성 물질로 알려진 NO 분비량을 측정하였으며, PGS에 의해 NO의 생성을 증가함을 확인하였다. 또한, PGS가 NO 생성 억제제 NIL을 함께 처리하였을 때 항암효과가 나타나지 않게 됨을 재확인함으로써, PGS 10 ${\mu}g/mL$에서 나타낸 대식세포의 항암효과는 일부 NO 생성 및 분비에 의한 작용 기전임을 보여주었다. PGS의 면역조절작용 중 항염증효과 실험에서는 PGS가 염증환경에서 과도하게 분비된 NO를 다소 억제하는 경향을 보였으나, 항염증조절에서 대표적인 물질로 알려진 TNF-${\alpha}$ 조절에는 효과를 나타내지 않았다. PGS가 염증환경에서의 TNF-${\alpha}$억제조절에는 영향을 미치지 않았으나 TNF-${\alpha}$는 항암물질로도 알려져 있으므로 향후 PGS의 항암효과에 대한 연구에서 TNF-${\alpha}$의 생성에 관한 연구는 NO를 매개하는 항암 효과 외에 다른 기전을 설명해줄 수 있을 것으로 보인다. 이러한 결과들은 PGS가 항암요법의 보조제 및 면역보조제로써의 활용에 개발 가능성이 있다는 것을 보여준다.

Keywords

References

  1. Adams, D.O. and T.A. Hamilton. 1984. The cell biology of macrophage activation. Annu. Rew. Immunol. 2:283-318. https://doi.org/10.1146/annurev.iy.02.040184.001435
  2. Hamsa, T.P. and G. Kuttan. 2011. Evaluation of the antiinflammatory and anti-tumor effect of ipomoea obscura (L) and its mode of action through the inhibition of pro inflammatory cytokines, nitric oxide and COX-2. Inflammation 34(3):171-183. https://doi.org/10.1007/s10753-010-9221-4
  3. Han, L.K., B.J. Xu, Y. Kimura, Y. Zheng and H. Okuda. 2000. Platycodi radix affects lipid metabolism in mice with high fat diet-induced obesity. J. Nutr. 130:2760-2764.
  4. Han, S.B., S.H. Park, K.H. Lee, C.W. Lee, S.H. Lee, H.C. Kim, Y.S. Kim, H.S. Lee and H.M. Kim. 2001. Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. Int. Immunopharmacol. 1:1969-1978. https://doi.org/10.1016/S1567-5769(01)00124-2
  5. Hibbs, J.B., R.R. Taintor, I. Vavrin and E.M. Rachlin. 1998. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. commun. 157:87-92.
  6. Ishii, H., K. Tori, T. Tozyo and Y. Yoshimura. 1984. Saponins from roots of Platycodon grandiflorum. Part 2. Isolation and structure of new triterpene glycosides. J. Chem. Soc. Perkin. Trans. I 661-668.
  7. Ishii H., K. Tori and Y. Yoshimura, 1981. Saponins from roots of Platycodon grandiflorum. Part 1. Structure of prosapogenins. J. Chem. Soc. Perkin. Trans. I 1928-1933. https://doi.org/10.1039/p19810001928
  8. Jofre-Monseny, L., S. de Pascual-Teresa, E. Plonka, P. Huebbe, C. Boesch-Saadatmandi, A.M. Minihane and G. Rimbach. 2007. Differential effects of apolipoprotein E3 and E4 on markers of oxidative status in macrophages. Br. J. Nutr. 97:864-871. https://doi.org/10.1017/S0007114507669219
  9. Kang, N.S. and E.H. Sohn. 2010. Immunomodulatory Effects of fructus and semen from Rosa rugosa on macrophages. J. Korean Plant Res. 23(5):399-405 (in Korean).
  10. Nathan, C.F. 1987. Secretory products of macrophages. J. Clin. Invest. 79:319-326. https://doi.org/10.1172/JCI112815
  11. Noh, J.R., Y.H. Kim, G.T. Gang, K.J. Yang, S.K. Kim, S.Y. Ryu, Y.S. Kim, C.H. Lee and H.S. Lee. 2010. Preventative effects of Platycodon grandiflorum treatment on hepatic steatosis in high fat diet-fed C57BL/6 mice. Biol. Pharm. Bull. 33:450-454. https://doi.org/10.1248/bpb.33.450
  12. Ouyang, K., L. Chen, H. Sun, J. Du and M. Shi. 2011. Screening and appraisal for immunological adjuvant-active fractions from Platycodon grandiflorum total saponins. in press.
  13. Shen, B., M. Hagiwara, Y.Y. Yao, L. Chao and J. Chao. 2008. Salutary effect of kallistatin in saltinduced renal injury, inflammation, and fibrosis via antioxidative stress. Hypertension 51:1358-1365. https://doi.org/10.1161/HYPERTENSIONAHA.107.108514
  14. Strieter, R., S. Kunkel and R. Bone, 1993. Role of tumor necrosis factor-alpha in disease states and inflammation. Critical. Care. Medicine 21:S447-S463. https://doi.org/10.1097/00003246-199310001-00006
  15. Tada, A., Y. Kaneiwa, J. Shoji, S. Shibata, 1975. Studies on the saponins of the root of Platycodon grandiflorum A. De Candolle. I. Isolation and the structure of platycodin-D. Chem. Pharm. Bull. 23:2965-2972. https://doi.org/10.1248/cpb.23.2965
  16. Vishvakarma, N.K. and S.M. Singh. 2010. Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphomabearing murine host: Implication in antitumor activation of tumor-associated macrophages. Immunol. Lett. 134:83-92. https://doi.org/10.1016/j.imlet.2010.09.002
  17. Zhang, L., H. Zhu, Y. Lun, D. Yan, L. Yu, B. Du and X. Zhu. 2007. Proteomic analysis of macrophages: a potential way to identify novel proteins associated with activation of macrophages for tumor cell killing. Cell. Mol. Immunol. 4(5):359-367.

Cited by

  1. Antibacterial and anti-inflammatory effects of Platycodon grandiflorum extracts vol.12, pp.3, 2014, https://doi.org/10.14400/JDC.2014.12.3.359
  2. Physiological Activities of Ethanol Extracts from Different Parts of Allium hookeri vol.28, pp.2, 2015, https://doi.org/10.9799/ksfan.2015.28.2.295
  3. Study on the Immunomodulatory Effects of Ellagic Acid and their Mechanisms Related to Toll-like Receptor 4 in Macrophages vol.25, pp.5, 2012, https://doi.org/10.7732/kjpr.2012.25.5.561
  4. Quality Characteristics of Cookies containing Platycodon grandiflorum Powder vol.26, pp.4, 2013, https://doi.org/10.9799/ksfan.2013.26.4.759
  5. Physicochemical Properties of Black Doraji (Platycodon grandiflorum) vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.422
  6. Comparison of the Nutrient Composition and Quality of the Root of Allium hookeri Grown in Korea and Myanmar vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.544
  7. Effects of Beta-glucan from Coriolus versicolor on Scavenger Receptor B1 Expression and their Involvement of Dectin-1 and Casein Kinase 2 vol.25, pp.6, 2012, https://doi.org/10.7732/kjpr.2012.25.6.664
  8. Comparison of Growth Inhibitory Effects on Cancer Cells of Saponin and Fucoidan Treated with Recombinant Thermophilic Xylose Isomerase vol.28, pp.5, 2013, https://doi.org/10.7841/ksbbj.2013.28.5.332
  9. 피복물 종류에 따른 더덕의 생육 및 항산화 물질 비교 vol.24, pp.3, 2016, https://doi.org/10.7783/kjmcs.2016.24.3.183
  10. Immune Cells Activity, Cytotoxicity and Nitrite Scavenging Activity of Extracts from Several Resource Plants vol.31, pp.6, 2018, https://doi.org/10.7732/kjpr.2018.31.6.604
  11. 추출 용매에 따른 Lactobacillus plantarum 발효 우슬의 항염증 효과 증진 vol.30, pp.2, 2011, https://doi.org/10.14478/ace.2018.1102
  12. Platycodon grandiflorum Extract Ameliorates Cyclophosphamide-Induced Immunosuppression in Mice vol.29, pp.4, 2019, https://doi.org/10.17495/easdl.2019.8.29.4.303
  13. Inhibitory effects of modified gamgil-tang in a particulate matter-induced lung injury mouse model vol.284, pp.None, 2011, https://doi.org/10.1016/j.jep.2021.114789