• Title/Summary/Keyword: NO and cytokines production

Search Result 767, Processing Time 0.032 seconds

Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages (LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과)

  • Yang, Hui;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, anti-inflammatory activity of hot water extract of Aronia fruits (AF-H) was examined. Pre-treatment with AF-H significantly inhibited production of nitric oxide (NO) and prostaglandin E-2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The inhibitory effect of AF-H on LPS-induced inflammation was also confirmed by down-regulation of inducible NO synthase as well as cyclooxygenase-2 protein expression. Furthermore, treatment with AF-H significantly inhibited secretion of inflammatory cytokines such as tumor-necrosis $factor-{\alpha}$ and interleukin-6. Signal transduction pathway studies further indicated that AF-H inhibited LPS-induced activation of nuclear $factor-{\kappa}B$, but not mitogen-activated protein kinase. Treatment with AF-H also partially protected against LPS-induced lethal shock in C57BL/6 mice, although its effect was not statistically significant. These results suggest that AF-H is a more promising nutraceutical or medicinal agent for inhibition of LPS-induced inflammation or inflammation-related diseases.

Anti-inflammatory activity Effects of Mori Folium Water Extracton IL-1α, IL-6 and IL-10 on mouse macrophages (상엽 추출물이 마우스 대식세포의 IL-1α, IL-6, IL-10에 대한 항염활성 연구)

  • Park, Young Sik;Han, Hyo-Sang
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.613-620
    • /
    • 2018
  • This study was conducted to investigate of Mori Folium Water Extract (MF) on anti-inflammation activity. MF Water extracts after 24 houres cultivation were examined to ascertain the cell viability of mouse macrophage RAW 264.7 cells. The influence of the Water extracts in RAW 264.7 macrophage cells treated with LPS was investigated. nitric oxide (NO) production, nterleukin$(IL)-1{\alpha}$ IL-6 and IL-10 increased generation of cytokines. mouse macrophage RAW 264.7 cells cell viability changes were no decreas after MTT assay of MF Water extract. The MF water extracts inhibited NO generation caused by LPS in the macrophages over $25{\mu}g/mL$. The MF water extracts increased in the control group the $IL-1{\alpha}$ and IL-6 activation generated by LPS in the macrophages over $50{\mu}g/mL$. Accordingly, it was found that different MF water extract concentrations significantly influenced certain anti-inflammation activities in RAW 264.7 macrophage cells. The results of this study are expected to be highly applicable to health - friendly functional materials. Further studies are needed to confirm the signaling pathways associated with anti-inflammation of macrophages through continuous studies.

Properties of hydrolyzed α-lactalbumin, β-lactoglobulin and bovine serum albumin by the alcalase and its immune-modulation activity in Raw 264.7 cell

  • Yu, Jae Min;Son, Ji Yoon;Renchinkhand, Gerelyuya;Kim, Kwang-Yeon;Sim, Jae Young;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.459-470
    • /
    • 2020
  • This study investigated the effects of the proteolytic hydrolysates of α-lactalbumin (LA), β-lactoglobulin (LG) and bovine serum albumin (BSA) by alcalase on inflammatory cytokines. The proteolytic hydrolysates were separated into two fraction of peptides, ≤ 10,000 Da and > 10,000 Da, respectively, because various low molecular weight peptides were generated during the hydrolysis reaction time. Among the hydrolysate peptides, BSA (all types), β-LG (> 10,000 Da), and α-LA (> 10,000 Da) showed an inhibitory activity against thymic stromal lymphopoietin (TSLP) mRNA expression in lipopolysaccharide-induced RAW264.7 murine macrophages. α-LA (> 10,000 Da), β-LG (hydrolysates), and BSA (> 10,000 Da) showed an inhibitory activity against tumor necrosis factor (TNF)-α expression. α-LA (all types), β-LG (hydrolysates, > 10,000 Da), and BSA (> 10,000 Da) showed an inhibitory activity against interleukin-6 (IL-6) expression. α-LA (> 10,000 Da), β-LG (> 10,000 Da), and BSA (all types) showed an inhibitory activity against inducible nitric oxide synthase (iNOS) expression. α-LA (> 10,000 Da), β-LG (> 10,000 Da), and BSA (all types) showed an inhibitory activity against cyclooxygenase (COX)-2 expression. The lowest level of TNF-α production was measured with α-LA (> 10,000 Da) and β-LG (> 10,000 Da) for all types, and a similar low level was measured for all types of BSA. The highest level of IL- 6 production was measured with α-LA (≤ 10,000 Da) among α-LA, β-LG, and IL-6. The low level of NO production was similar with α-LA, β-LG, and BSA but not with α-LA (≤ 10,000 Da). These potential peptides from whey protein hydrolysates could be used for food, medicinal, and industrial applications.

High fat diet-induced obesity leads to proinflammatory response associated with higher expression of NOD2 protein

  • Kim, Min-Soo;Choi, Myung-Sook;Han, Sung-Nim
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Obesity has been reported to be associated with low grade inflammatory status. In this study, we investigated the inflammatory response as well as associated signaling molecules in immune cells from diet-induced obese mice. Four-week-old C57BL mice were fed diets containing 5% fat (control) or 20% fat and 1% cholesterol (HFD) for 24 weeks. Splenocytes ($1{\times}10^7$ cells) were stimulated with $10\;{\mu}g/mL$ of lipopolysaccharide (LPS) for 6 or 24 hrs. Production of interleukin (IL)-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as protein expression levels of nucleotide-binding oligomerization domain (NOD)2, signal transducer and activator of transcription (STAT)3, and pSTAT3 were determined. Mice fed HFD gained significantly more body weight compared to mice fed control diet ($28.2{\pm}0.6$ g in HFD and $15.4{\pm}0.8$ g in control). After stimulation with LPS for 6 hrs, production of IL-$1{\beta}$ was significantly higher (P=0.001) and production of tumor necrosis factor (TNF)-${\alpha}$ tended to be higher (P < 0.064) in the HFD group. After 24 hrs of LPS stimulation, splenocytes from the HFD group produced significantly higher levels of IL-6 ($10.02{\pm}0.66$ ng/mL in HFD and $7.33{\pm}0.56$ ng/mL in control, P=0.005) and IL-$1{\beta}$ ($121.34{\pm}12.72$ pg/mL in HFD and $49.74{\pm}6.58$ pg/mL in control, P < 0.001). There were no significant differences in the expression levels of STAT3 and pSTAT3 between the HFD and the control groups. However, the expression level of NOD2 protein as determined by Western blot analysis was 60% higher in the HFD group compared with the control group. NOD2 contributes to the induction of inflammation by activation of nuclear factor ${\kappa}B$. These findings suggest that diet-induced obesity is associated with increased inflammatory response of immune cells, and higher expression of NOD2 may contribute to these changes.

Immunomodulatory Activities of Ethanol Extract of Cordyceps militaris in Immunocompromised Mice (밀리타리스 동충하초(Cordyceps militaris) 에탄올 추출물의 면역억제 마우스 면역활성에 미치는 영향)

  • Kim, Hye-Ju;Lee, Tae-Ho;Kwon, Yong-Sam;Son, Mi-Won;Kim, Chae-Kyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.494-500
    • /
    • 2012
  • In order to determine the functional benefits of $Cordyceps$ $militaris$ in the immune system, we examined the immunomodulatory activities of $Cordyceps$ $militaris$ in an immunocompromised C57BL/6 mice model. Mice were injected intraperitoneally with an immunosuppressive drug, cyclophosphamide, and then administered orally with 3% hydroxypropylmethylcellulose or 30, 100, and 300 mg/kg of 50% ethanol extract of $Cordyceps$ $militaris$ (CM 30, CM 100, and CM 300, respectively) for 12 days. Mice treated with CM displayed significantly increased splenocyte proliferation and natural killer cell activity compared to immunosuppressed control mice (p<0.05). The spleen cells isolated from mice treated with CM also displayed increased production of Th1 cytokines, including IL-2, IL-12, IFN-${\gamma}$ and TNF-${\alpha}$, suggesting enhanced cellular immunity in response to CM. However, CM had no significant effect on the production of IL-4 and IL-10. These results indicate that $Cordyceps$ $militaris$ enhances immune function by promoting immune cell proliferation and Th1 cytokine production.

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells

  • Jeon, Se-Jin;Kwon, Kyung-Ja;Shin, Sun-Mi;Lee, Sung-Hoon;Rhee, So-Young;Han, Seol-Heui;Lee, Jong-Min;Kim, Han-Young;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Min, Byung-Sun;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.

Effect of Sinapis alba L. on expression of interferon-gamma and interleukin-4 production in anti-CD3/anti-CD28-stimulated CD4(+) T cells (CD4+ T cells에서 백개자가 IFN-$\gamma$와 IL-4 생성에 미치는 영향)

  • Park, Dae-Jung;Lee, Jang-Cheon;Lee, Young-Cheol
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Objective : Sinapis alba L. (SA) is a korean traditional herbal medicine that is usually used to prevent or treat inflammatory diseases, such as respiratory infection and rheumatoid arthritis. However, the effects of SA supplementation in vitro on serum antibody levels, splenocyte and peritoneal macrophage immune responses have not yet been determined. In this study, we examined the effect of SA on the production of Th1/Th2 cytokines. Methods : Splenocytes were isolated from naive C57BL/6 mice. Cells were enriched for CD4+ cell populations by first staining the cells with anti-CD4 (BD PharMingen, Calif, USA). CD4+ T cells were selected on a (CS) column, and the flow-through was collected as CD4+ T cells. Isolated cells were activated by overnight incubation on 24-well plates coated with $1{\mu}g/mL$ anti-CD3, $1{\mu}g/mL$ anti-CD28 and with SA ($100{\mu}g/mL$). Primary macrophages were collected from the peritoneal cavities of mice (8-week-old female C57BL/6). The peritoneal macrophages were washed and plated with RPMI-1640 overnight for the experiments. After 48-hours cultures, samples were centrifuged at 2000 rpm for 10 minutes, and the supernatants were stored at $-80^{\circ}C$. Mouse IL-4, IFN-$\gamma$ and TNF-$\alpha$ were quantified using ELISA kits (BioSource International, Camarillo, Calif, USA) according to the manufacturer's protocols. Results : SA at 100ug/ml decreased the generation of Th1 cytokine (IFN-$\gamma$) by 0.5-fold. However, SA has no effect on Th2 (IL-4) production. Conclusions : These results suggest that SA may play an important role in the control of T-cell-mediated autoimmunity by down-regulation of Th1 cytokine (especially IFN-$\gamma$, TNF-$\alpha$). These data may contribute to the design of new immunomodulating treatments for a group of autoimmune diseases.

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Preparation and Functional Properties of Dendropanax morbiferus Kombucha

  • Jie Rong;Ki-Bae Hong;Yun Jae Cho;Sung-Soo Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.442-448
    • /
    • 2023
  • This study aimed to prepare kombucha, a fermented tea beverage, containing Dendropanax morbiferus (DM) leaves and roots, and analyze its antioxidant and intracellular activities. We compared the pH change, total acidity, radical scavenging activity, and oxygen radical absorbance capacity (ORAC) of kombucha fermented with black tea alone and that with added DM leaves or roots during fermentation. Using RAW 264.7, we evaluated the effects of kombucha containing different DM parts on nitric oxide (NO) production and inflammation-related cytokine content in cells. Kombucha containing ethanol extracts of DM leaves (BTK-E-DML) and roots (BTK-E-DMR) showed higher radical scavenging activity and ORAC 3 d after fermentation than that prepared from black tea alone (BTK-Ori). In an in vitro experiment using RAW 264.7, samples were treated with 8 mg/mL kombucha considering cytotoxicity; the lipopolysaccharide (LPS)-induced NO content significantly reduced after BTK-E-DML and BTK-EDMR treatments compared with that after BTK-Ori treatment. Additionally, the levels of interleukin-6 and tumor necrosis factor-alpha, which were LPS-stimulated inflammatory cytokines, significantly decreased in cells treated with BTK-E-DML and BTK-E-DMR 15 d after fermentation compared with those treated with BTK-Ori. In conclusion, these results demonstrate that kombucha fermented with the leaves and roots of DM increases antioxidant activity and can significantly regulate inflammatory responses at the cellular level.

Effect of Chito-oligosaccharide Supplementation on Immunity in Broiler Chickens

  • Deng, Xingzhao;Li, Xiaojing;Liu, Pai;Yuan, Shulin;Zang, Jianjun;Li, Songyu;Piao, Xiangshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1651-1658
    • /
    • 2008
  • This study was conducted to determine the effects of dietary supplementation of either 100 mg/kg chito-oligosaccharide (COS) or chlortetracycline (CTC) with corn-soybean-fish meal on immunity in broiler chickens. A total of 147 one-day old male broiler chicks were randomly allocated to 3 treatments with 7 replicate pens per treatment and 7 birds per pen. The experimental diets consisted of a control diet based on corn, soybean and fish meal without COS and any antibiotic supplement and similar diets supplemented with either CTC (80 mg/kg from d 1 to 21 and 50 mg/kg from d 22 to 42) or COS (100 mg/kg from d 1 to 42). During the entire experimental period, all birds had ad libitum access to diets and water. The main immune organ indices, T-lymphocyte proliferation, serum cytokine concentrations, serum NO level and serum iNOS activity were measured on d 21 and d 42. On d 21, broilers fed 100 mg/kg COS had improved (p<0.01) indices of spleen, thymus, and bursa of Fabricius compared with the control and CTC birds. Birds receiving 100 mg/kg COS had higher (p<0.05) serum concentrations of $IL-1{\beta}$, IL-6, IgM, NO and iNOS than birds on the control treatment. Serum $Ca^{2+}$ level of birds fed 100 mg/kg COS tended to be higher (p = 0.049) than in birds fed CTC. On d 42, the birds fed 100 mg/kg COS had higher (p<0.05) concentrations of TNF-${\alpha}$ and IgM in serum than birds in both the CTC and control treatments. Birds fed 100 mg/kg COS had a higher concentration of IFN-$\gamma$ than the control group. In conclusion, dietary supplementation of COS appeared to improve the immunity of broilers by promoting the weight of the main immune organs, increasing IgM secretion, stimulating microphages to release $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 and IFN-$\gamma$, and activating iNOS to induce NO.